publications
For latest publications, please visit my Google Scholar page.
2024
December
- HyperMARL: Adaptive Hypernetworks for Multi-Agent RLKale-ab Abebe Tessera, Arrasy Rahman, and Stefano V AlbrechtarXiv preprint arXiv:2412.04233, Dec 2024
Balancing individual specialisation and shared behaviours is a critical challenge in multi-agent reinforcement learning (MARL). Existing methods typically focus on encouraging diversity or leveraging shared representations. Full parameter sharing (FuPS) improves sample efficiency but struggles to learn diverse behaviours when required, while no parameter sharing (NoPS) enables diversity but is computationally expensive and sample inefficient. To address these challenges, we introduce HyperMARL, a novel approach using hypernetworks to balance efficiency and specialisation. HyperMARL generates agent-specific actor and critic parameters, enabling agents to adaptively exhibit diverse or homogeneous behaviours as needed, without modifying the learning objective or requiring prior knowledge of the optimal diversity. Furthermore, HyperMARL decouples agent-specific and state-based gradients, which empirically correlates with reduced policy gradient variance, potentially offering insights into its ability to capture diverse behaviours. Across MARL benchmarks requiring homogeneous, heterogeneous, or mixed behaviours, HyperMARL consistently matches or outperforms FuPS, NoPS, and diversity-focused methods, achieving NoPS-level diversity with a shared architecture. These results highlight the potential of hypernetworks as a versatile approach to the trade-off between specialisation and shared behaviours in MARL.
June
- Agent-Temporal Credit Assignment for Optimal Policy Preservation in Sparse Multi-Agent Reinforcement LearningAditya Kapoor, Sushant Swamy, Kale-ab Tessera, and 4 more authorsIn Coordination and Cooperation for Multi-Agent Reinforcement Learning Methods Workshop at RLC 2024, Jun 2024
The ability of agents to learn optimal policies is hindered in multi-agent environments where all agents receive a global reward signal sparsely or only at the end of an episode. The delayed nature of these rewards, especially in long-horizon tasks, makes it challenging for agents to evaluate their actions at intermediate time steps. In this paper, we propose Agent-Temporal Reward Redistribution (ATRR), a novel approach to tackle the agent-temporal credit assignment problem by redistributing sparse environment rewards both temporally and at the agent level. ATRR first decomposes the sparse global rewards into rewards for each time step and then calculates agent-specific rewards by determining each agent’s relative contribution to these decomposed temporal rewards. We theoretically prove that there exists a redistribution method equivalent to potential-based reward shaping, ensuring that the optimal policy remains unchanged. Empirically, we demonstrate that ATRR stabilizes and expedites the learning process. We also show that ATRR, when used alongside single-agent reinforcement learning algorithms, performs as well as or better than their multi-agent counterparts.
February
- Efficiently Quantifying Individual Agent Importance in Cooperative MARLOmayma Mahjoub, Ruan Kock, Siddarth Singh, and 4 more authorseXplainable AI approaches for deep reinforcement learning (XAI4DRL) Workshop @ AAAI (Oral), Feb 2024
Measuring the contribution of individual agents is challenging in cooperative multi-agent reinforcement learning (MARL). In cooperative MARL, team performance is typically inferred from a single shared global reward. Arguably, among the best current approaches to effectively measure individual agent contributions is to use Shapley values. However, calculating these values is expensive as the computational complexity grows exponentially with respect to the number of agents. In this paper, we adapt difference rewards into an efficient method for quantifying the contribution of individual agents, referred to as Agent Importance, offering a linear computational complexity relative to the number of agents. We show empirically that the computed values are strongly correlated with the true Shapley values, as well as the true underlying individual agent rewards, used as the ground truth in environments where these are available. We demonstrate how Agent Importance can be used to help study MARL systems by diagnosing algorithmic failures discovered in prior MARL benchmarking work. Our analysis illustrates Agent Importance as a valuable explainability component for future MARL benchmarks.
- How much can change in a year? Revisiting Evaluation in Multi-Agent Reinforcement LearningSiddarth Singh, Omayma Mahjoub, Ruan Kock, and 4 more authorseXplainable AI approaches for deep reinforcement learning (XAI4DRL) Workshop @ AAAI, Feb 2024
Establishing sound experimental standards and rigour is important in any growing field of research. Deep Multi-Agent Reinforcement Learning (MARL) is one such nascent field. Although exciting progress has been made, MARL has recently come under scrutiny for replicability issues and a lack of standardised evaluation methodology, specifically in the cooperative setting. Although protocols have been proposed to help alleviate the issue, it remains important to actively monitor the health of the field. In this work, we extend the database of evaluation methodology previously published by (Gorsane et al., 2022) containing meta-data on MARL publications from top-rated conferences and compare the findings extracted from this updated database to the trends identified in their work. Our analysis shows that many of the worrying trends in performance reporting remain. This includes the omission of uncertainty quantification, not reporting all relevant evaluation details and a narrowing of algorithmic development classes. Promisingly, we do observe a trend towards more difficult scenarios in SMAC-v1, which if continued into SMAC-v2 will encourage novel algorithmic development. Our data indicate that replicability needs to be approached more proactively by the MARL community to ensure trust in the field as we move towards exciting new frontiers.
2023
November
- Are we going MAD? Benchmarking Multi-Agent Debate between Language Models for Medical Q&AAndries Smit, Paul Duckworth, Nathan Grinsztajn, and 3 more authorsIn Deep Generative Models for Health Workshop NeurIPS 2023, Nov 2023
Recent advancements in large language models (LLMs) underscore their potential for responding to medical inquiries. However, ensuring that generative agents provide accurate and reliable answers remains an ongoing challenge. In this context, multi-agent debate (MAD) has emerged as a prominent strategy for enhancing the truthfulness of LLMs. In this work, we provide a comprehensive benchmark of MAD strategies for medical Q&A, along with open-source implementations. This sheds light on the effective utilization of various strategies including the trade-offs between cost, time, and accuracy. We build upon these insights to provide a novel debate-prompting strategy based on agent agreement that outperforms previously published strategies on medical Q&A tasks.
October
- Generalisable Agents for Neural Network OptimisationKale-ab Tessera *, Callum Tilbury *, Sasha Abramowitz *, and 5 more authorsIn Workshop on Advancing Neural Network Training: Computational Efficiency, Scalability, and Resource Optimization (WANT@NeurIPS 2023) and OPT 2023: Optimization for Machine Learning, Oct 2023
Optimising deep neural networks is a challenging task due to complex training dynamics, high computational requirements, and long training times. To address this difficulty, we propose the framework of Generalisable Agents for Neural Network Optimisation (GANNO) – a multi-agent reinforcement learning (MARL) approach that learns to improve neural network optimisation by dynamically and responsively scheduling hyperparameters during training. GANNO utilises an agent per layer that observes localised network dynamics and accordingly takes actions to adjust these dynamics at a layerwise level to collectively improve global performance. In this paper, we use GANNO to control the layerwise learning rate and show that the framework can yield useful and responsive schedules that are competitive with handcrafted heuristics. Furthermore, GANNO is shown to perform robustly across a wide variety of unseen initial conditions, and can successfully generalise to harder problems than it was trained on. Our work presents an overview of the opportunities that this paradigm offers for training neural networks, along with key challenges that remain to be overcome.
March
- Reduce, Reuse, Recycle: Selective Reincarnation in Multi-Agent Reinforcement LearningJuan Claude Formanek, Callum Rhys Tilbury, Jonathan Phillip Shock, and 2 more authorsIn Workshop on Reincarnating Reinforcement Learning at ICLR 2023 (Oral), Mar 2023
’Reincarnation’ in reinforcement learning has been proposed as a formalisation of reusing prior computation from past experiments when training an agent in an environment. In this paper, we present a brief foray into the paradigm of reincarnation in the multi-agent (MA) context. We consider the case where only some agents are reincarnated, whereas the others are trained from scratch – selective reincarnation. In the fully-cooperative MA setting with heterogeneous agents, we demonstrate that selective reincarnation can lead to higher returns than training fully from scratch, and faster convergence than training with full reincarnation. However, the choice of which agents to reincarnate in a heterogeneous system is vitally important to the outcome of the training – in fact, a poor choice can lead to considerably worse results than the alternatives. We argue that a rich field of work exists here, and we hope that our effort catalyses further energy in bringing the topic of reincarnation to the multi-agent realm.
2022
July
- Just-in-Time Sparsity: Learning Dynamic Sparsity SchedulesKale-ab Tessera, Chiratidzo Matowe, Arnu Pretorius, and 2 more authorsIn Dynamic Neural Networks, ICML Workshop, Jul 2022
Sparse neural networks have various computational benefits while often being able to maintain or improve the generalization performance of their dense counterparts. Popular sparsification methods have focused on what to sparsify, i.e. which redundant components to remove from neural networks, while when to sparsify, has received less attention and is usually handled using heuristics or simple schedules. In this work, we focus on learning sparsity schedules from scratch using reinforcement learning. In simple CNNs and ResNet-18, we show that our learned schedules are diverse across layers and training steps, while achieving competitive performance when compared to naive handcrafted schedules. Our methodology is general-purpose and can be applied to learning effective sparsity schedules across any pruning implementation.
2021
November
- On pseudo-absence generation and machine learning for locust breeding ground prediction in AfricaIbrahim Salihu Yusuf, Kale-ab Tessera, Thomas Tumiel, and 2 more authorsIn AI + HADR and ML4D NeurIPS Workshops, Nov 2021
Desert locust outbreaks threaten the food security of a large part of Africa and have affected the livelihoods of millions of people over the years. Machine learning (ML) has been demonstrated as an effective approach to locust distribution modelling which could assist in early warning. ML requires a significant amount of labelled data to train. Most publicly available labelled data on locusts are presence-only data, where only the sightings of locusts being present at a location are recorded. Therefore, prior work using ML have resorted to pseudo-absence generation methods as a way to circumvent this issue. The most commonly used approach is to randomly sample points in a region of interest while ensuring that these sampled pseudo-absence points are at least a specific distance away from true presence points. In this paper, we compare this random sampling approach to more advanced pseudo-absence generation methods, such as environmental profiling and optimal background extent limitation, specifically for predicting desert locust breeding grounds in Africa. Interestingly, we find that for the algorithms we tested, namely logistic regression, gradient boosting, random forests and maximum entropy, all popular in prior work, the logistic model performed significantly better than the more sophisticated ensemble methods, both in terms of prediction accuracy and F1 score. Although background extent limitation combined with random sampling boosted performance for ensemble methods, for LR this was not the case, and instead, a significant improvement was obtained when using environmental profiling. In light of this, we conclude that a simpler ML approach such as logistic regression combined with more advanced pseudo-absence generation, specifically environmental profiling, can be a sensible and effective approach to predicting locust breeding grounds across Africa.
July
- Keep the Gradients Flowing: Using Gradient Flow to Study Sparse Network OptimizationKale-ab Tessera, Sara Hooker, and Benjamin RosmanIn Sparsity in Neural Networks Workshop, Jul 2021
Training sparse networks to converge to the same performance as dense neural architectures has proven to be elusive. Recent work suggests that initialization is the key. However, while this direction of research has had some success, focusing on initialization alone appears to be inadequate. In this paper, we take a broader view of training sparse networks and consider the role of regularization, optimization, and architecture choices on sparse models. We propose a simple experimental framework, Same Capacity Sparse vs Dense Comparison (SC-SDC), that allows for a fair comparison of sparse and dense networks. Furthermore, we propose a new measure of gradient flow, Effective Gradient Flow (EGF), that better correlates to performance in sparse networks. Using top-line metrics, SC-SDC and EGF, we show that default choices of optimizers, activation functions and regularizers used for dense networks can disadvantage sparse networks. Based upon these findings, we show that gradient flow in sparse networks can be improved by reconsidering aspects of the architecture design and the training regime. Our work suggests that initialization is only one piece of the puzzle and taking a wider view of tailoring optimization to sparse networks yields promising results.
- Mava: a research framework for distributed multi-agent reinforcement learningArnu Pretorius *, Kale-ab Tessera *, Andries P Smit *, and 8 more authorsarXiv preprint arXiv:2107.01460v1, Jul 2021
Breakthrough advances in reinforcement learning (RL) research have led to a surge in the development and application of RL. To support the field and its rapid growth, several frameworks have emerged that aim to help the community more easily build effective and scalable agents. However, very few of these frameworks exclusively support multi-agent RL (MARL), an increasingly active field in itself, concerned with decentralised decision-making problems. In this work, we attempt to fill this gap by presenting Mava: a research framework specifically designed for building scalable MARL systems. Mava provides useful components, abstractions, utilities and tools for MARL and allows for simple scaling for multi-process system training and execution, while providing a high level of flexibility and composability. Mava is built on top of DeepMind’s Acme \citephoffman2020acme, and therefore integrates with, and greatly benefits from, a wide range of already existing single-agent RL components made available in Acme. Several MARL baseline systems have already been implemented in Mava. These implementations serve as examples showcasing Mava’s reusable features, such as interchangeable system architectures, communication and mixing modules. Furthermore, these implementations allow existing MARL algorithms to be easily reproduced and extended. We provide experimental results for these implementations on a wide range of multi-agent environments and highlight the benefits of distributed system training.