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Do current MARL environments test genuine cooperative reasoning, the kind that requires behaviours
grounded in observations and memory?

1) PROBLEM FORMULATION 2) CASE STUDY: BRITTLE CONVENTIONS VS. ROBUST COORDINATION
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Memory:
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mediate observations.

Same method, but the mechanism for success changes with environment modifications

(partner composition).
Implication: Current MARL environments may enable fragile co-adaptation rather than

robust cooperation.

(b) Dec-POMDP: If you can’t
see, you must predict

3) EXPERIMENTS: MODERN ENVIRONMENTS
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SMAX-v2 style (5 Units).

TAKEAWAYS

* Modern model-free recurrent MARL methods can learn robust cooperative behaviour when environments
necessitate this.

* Yet current MARL environments may inadvertently allow success through alternative means (e.g. blind
conventions, memoryless coordination) rather than genuine cooperation.

We therefore advocate for new cooperative environments built upon two core principles: (1) behaviours
grounded in observations and (2) memory-based reasoning about other agents, ensuring success requires
genuine multi-agent cooperative reasoning.



