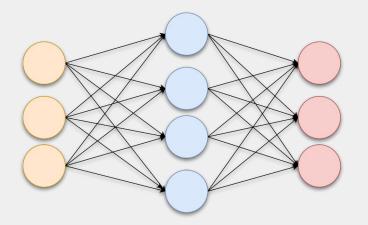
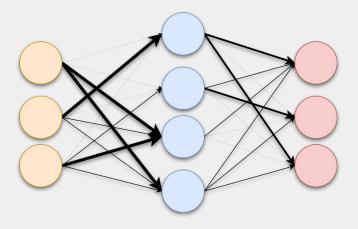
Learning Dynamic Networks



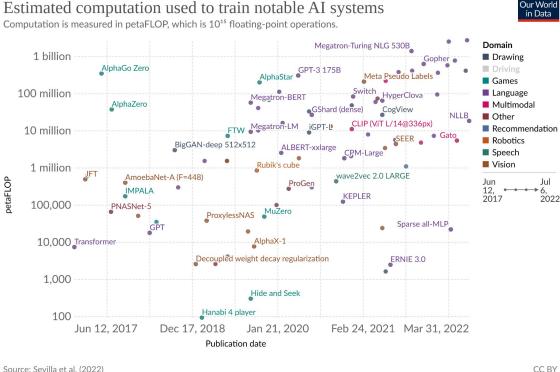


⊳InstaDeep™

co:here

Kale-ab Tessera, Chiratidzo Matowe, Arnu Pretorius, Benjamin Rosman, Sara Hooker

Motivation - Era of Large Scale Models



Note: The estimates have some uncertainty but the authors expect them to be correct within a factor of 2.

Source: Sevilla et al. (2022) and OurWorldInData

Our World in Data

Overparameterized models have

led to many breakthroughs in machine learning (Chowdhery et al., 2022; Brown et al., 2020; Zhai et al., 2021; Reed et al., 2022).

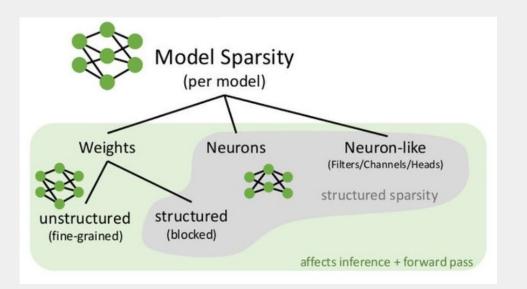
Challenges:

- ** Larger Models
 - Efficient storage and \succ inference.
 - Efficient training of large \succ models.
 - \succ **Overfitting**, regularization and generalization.
- * Train Longer
 - Handle temporal \succ dynamics of training.

Motivation - Sparsity

Common method to handle challenges of overparameterization - **Sparsity/Pruning**.

Benefits - similar performance, with a fraction of the weights (Gale et al., 2019; Frankle & Carbin, 2019), faster training (Dettmers & Zettlemoyer, 2019; Luo et al., 2017) and more robust to noise (Ahmad & Scheinkman, 2019).



Train Longer - Schedules

When we train longer -> more temporal decisions to make.

Temporal Decisions (examples include):

- ➤ Learning Rate:
 - Initial Learning Rate.
 - Function for the rate of change <u>Need LR</u> <u>Schedule.</u>
- ➤ Sparsity:
 - Initial Sparsity (% active neurons, weights, filters, channels etc).
 - Function for the rate of change <u>Need Sparsity</u> <u>Schedule.</u>

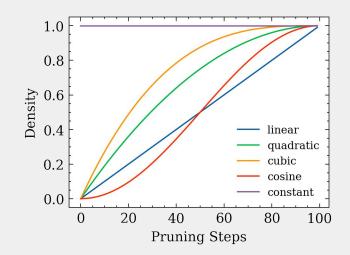
What about these choices per layer?! - Layerwise Schedules.

Standard approach - learn these schedules through trial-and-error.

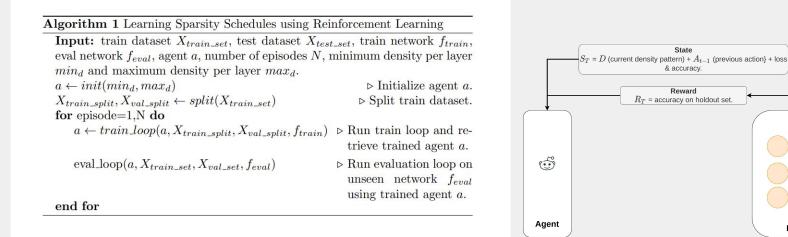
Related Work

Handcrafted schedules.

- Constant SET [1], Deep Rewiring (DeepR) [2] and Neural Network Synthesis Tool (NEST) [3].
- Cosine RigL [4] and Sparse Network From Scratch (SNFS) [5]
- **Cubic** [6],[7].



Our Approach - Can we learn these schedules using RL?



- Agent PPO.
- Dataset Cifar10.
- Sparsity:
 - Random Pruning, with Random Regrowth (**RP-RR**)
 - Magnitude Pruning, with Random Regrowth (MP-RR)

Environment - Neural Network

0.2 0.8 0.7 0.125 0.9

Action $A_t = (d_1, d_2, ..., d_L),$

where L is the number of layers and d_1 is the density for layer 1.

 $\dots \quad d_L$

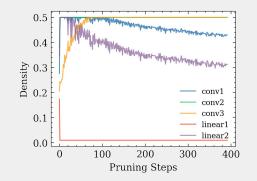
Results - Simple CNN - 5 Layers

1. Learned Schedules are Competitive

Table 1: Test Accuracy (mean and standard deviation) of different schedules on CIFAR-10, using Simple-CNN.

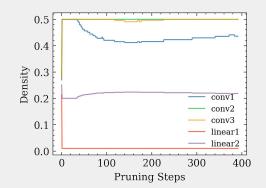
Target Density (%)	Schedule	Random Pruning with Random Regrowth (RP-RR)	Magnitude Pruning with Random Regrowth (MP-RR)
10	Linear	20.365 +- 17.952	60.418 +- 1.362
	Quadratic	23.15 +- 20.043	61.259 +- 1.485
	Cubic	33.721 +- 21.693	60.396 +- 0.832
	Cosine	18.302 +- 14.379	59.807 +- 0.384
	Constant	61.475 +- 0.731	62.536 +- 0.314
	Learned (Ours)	61.071 +- 1.574	63.191 +- 0.810
50	Linear	64.54 +- 0.477	64.78 +- 0.464
	Quadratic	64.987 +- 0.86	63.933 +- 0.431
	Cubic	65.31 +- 0.49	64.315 +- 0.437
	Cosine	64.672 +- 0.771	64.737 +- 0.345
	Constant	65.1 +- 0.283	65.388 +- 0.375
	Learned (Ours)	65.655 +- 0.515	65.686 +- 0.284
100	Linear	66.228 + 0.691	66.711 +- 0.423
	Quadratic	66.947 +- 0.749	67.25 +- 0.578
	Cubic	66.857 +- 0.627	67.395 +- 0.547
	Cosine	66.074 +- 0.282	66.18 +- 1.027
	Full Dense	67.815 +- 0.146	67.878 +- 0.482
	Learned (Ours)	67.534 +- 0.174	67.908 +- 0.162

2. Learned Schedules are Layerwise Diverse



3. Learned a Handcrafted Schedule!

Piecewise Schedule for Random Pruning-[8].



Results - ResNet18 & Conclusion

More **challenging** environment for our agent.

Schedule	Test Accuracy	
Linear	93.019 +- 0.024	
Quadratic	93.106 +- 0.107	
Cubic	93.148 +- 0.156	
Cosine	92.916 +- 0.105	
Constant (Fully Dense)	92.481 +- 0.641	
Learned (Ours)	92.818 +- 0.048	

Challenges:

- 1. **Non-stationarity** environment.
 - a. Our environment (the network we are learning a schedule for) is learning and adapting while our agent is learning to model the environment.
 - b. Worse for challenging networks use techniques like **data augmentation** and **learning rate decay** (e.g. ResNet-18).
- 2. High dimension action and (possibly) state space.
- 3. **Slow convergence** 25-50 episodes.

Conclusion:

In this work, we demonstrate that it is **possible** to learn **well-performing dynamic sparsity schedules** using reinforcement learning. The schedules learned are not arbitrary and are distinct per layer and pruning method.

<u>ICML Workshop Paper</u>- Workshop on Dynamic Neural Networks.

