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Multi-agent reinforcement learning can yield effective layerwise learning rate schedules.

Background: Existing strategies for choosing hyperparameters struggle to

simultaneously satisfy the requirements of performance, efficiency, and generalisability.

Goal: create a general method for learning optimisation schedules for supervised learning.

https://bit.ly/id-ganno
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e RL outer loop, with a supervised learning inner loop. :
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e Agents receive layerwise observations of network dynamics.
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e Agents take actions that adjust the learning rate. | )

Reward

e The inner neural network is trained for 100 steps. 4 v
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e Reward is the test accuracy on the holdout dataset. 6
e Agents are trained on easy problems (e.g. 2-layer CNN on o - OEX
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MNIST) and evaluated on harder problems (e.g. 5-layer et & 2
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CNN on CIFAR-10) to test generalisation. :
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GANNO generalises to more complex architectures
GANNO |earns adaptive schedules e GANNO is trained with ResNet-9 and generalises to
e The agentis able to learn a cyclical learning rate ResNet-18.
similar to SGDR. e GANNO is trained with varying initial learning rates
e This learning rate is reactive to plateaus and able to and weight decay values, so that it is robust during
help escape local minima. evaluation.
Conclusion: MARL proves crucial for GANNO's success, enabling adaptive layerwise N d2s
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learning rates, achieving generalisation, with only modest computational requirements.
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Challenges persist in agent foresight and reward formulation, and some handcrafted "i

schedules still outperform GANNO; yet the proposed framework is evidently a powerful one.
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https://bit.ly/ganno_marl

