

HyperMARL: Adaptive Hypernetworks for Multi-Agent RL

Kale-ab Abebe Tessera, Arrasy Rahman, Amos Storkey, Stefano V. Albrecht

Can we design a parameter-shared MARL architecture that flexibly supports both specialised and homogeneous behaviours—without modifying the learning objective, preset diversity levels or sequential updates?

1) Adaptability

- Adaptability, being able to learn specialised or homogeneous behaviours, is important in multi-agent systems.
- Efficient adaptability is critical in MARL parameter sharing (FuPS: full PS) vs independent parameters per agent (NoPS).
- Problem: FuPS methods are efficient, but struggle with specialisation.

2) Challenges: Parameter Sharing + Specialisation

Coupling agent-IDs and observations = higher gradient interference

- Related methods altered objectives, preset diversity levels, or sequential updates.
- Can shared policies adapt without these complexities? Can we decouple agent IDs and observations?

3) HyperMARL

- ★ Uses agent-conditioned hypernetworks to adaptively learn diverse, homogeneous or mixed behaviours.
- Enabling specialisation through the decoupling of observation- and agent-conditioned grads.
- ★ Input: Agent ID or learned embedding.
- ★ Output: per-agent policy and critic weights.

HyperMARL Hypernetwork Agent-Cond Grads Obs-Cond Grads Agent-specific weights **ID** Encoder

 $-[o_t^i,id^i]$ -

Decoupled

4) Gradient Decoupling

- * Agent-conditioned: deterministic w.r.t to mini-batch samples, separating agent identity from traj noise.
- Observation-conditioned: averages trajectory noise per agent.

5) Results

Navigation

5.1 Competitive to NoPS and Baselines in Specialised Tasks

Grads

 $[o_t^i,id^i]$

Coupled

Learns diverse behaviours with a lower policy variance.

(Bettini et al., 2022) c) Mixed Goals

Handles specialisation at scale – up to 17 agents. (Peng et al., 2021)

5.2 Competitive in homogeneous scenarios

SMAX

(Rutherford et al., 2024)

Many more results in the paper (e.g. off-policy, 22 scenarios, and 6 baselines).

6) Ablations + Embeddings

★ Gradient decoupling matters

* Agent embeddings move closer when task requires similar behaviour and further apart when task requires different behaviour.

Main Takeaways

- Gradient decoupling is a key ingredient in mitigating cross-agent interference -- can be achieved through agent-conditioned hypernets.
- Using *HyperMARL*, we showed it is possible to learn *adaptive* behaviour, across diverse tasks, without altering the learning objective, preset diversity levels or sequential updates.

