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Deep Learning: Key Challenges
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Problems with overparameterization:

➔ Higher cost of training - time, compute etc.

➔ Increase the latency and memory footprint.

➔ Overparameterized networks are more prone to memorization.

∴ Renewed focus on compression techniques -> sparsity/pruning.  



Why is Sparsity Interesting?
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Sparse Networks can lead to:

❏ Faster training and inference times. [1,2,3]

❏ More robust to noise. [4]

❏ Improving efficiency - memory or energy. [5,6] 

Similar or better performance than dense networks?



Types of Sparsity
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1. Sparse Activity
Only fraction of neurons are active -> Sparse Neurons.  

2. Sparse Connectivity
Neurons are only connected to only a subset of neurons in the previous 
layer -> Sparse Weights. 



Sparsity Research - Focus on Initialization

5

❖ Existing work:
➢ Grad Flow during DST [12]

➢ Loss landscape [13]

➢ Signal propagation [14]

➢ SGD Noise [15] 

❖ What about training dynamics?
➢ Regularization/ Normalization. 
➢ Optimization methods. 
➢ Activation functions. 
➢ Learning rates. 
➢ Their interactions?

❖ A lot of great work focusing on 
initialization - finding special weight 
initializations or "lottery tickets". [7,8,9]

❖ Focusing on initialization alone has 
proved to be inadequate. [10,11]

❖ Optimization outside of early stages 
of training is poorly understood - e.g. 
sensitivity of lottery tickets to higher 
learning rates.  [9,10,11]



Our Setting - When to Prune
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➔ Pruning Before Training (Pruning From Scratch)/Early in training. 

➔ Pruning During Training (Dynamic Sparsity)

➔ Pruning After Training



Our Setting - What to Prune
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● Impact on loss or the Hessian of the loss function.
● Magnitude Pruning.
● Connection sensitivity/Salency - SNIP[16] / SynFlow[17]. 
● Gradient flow - GRASP[18]. 
● Random Pruning. 

[11,19] showed that for pruning from scratch methods, shuffling the preserved weights 
does not affect final performance.



Sparsity Setting
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Pruning From Scratch + Random 
Pruning. 



Current way to compare sparse and 
dense networks
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Dense Network
Sparse Network

Prune

Compare

Can be iterative.



Issues
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1. Networks are different capacity.
2. Initial weight distributions are different. 
3. Training times are different.  



Ensure Same Capacity
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Active weights in layer l of 
sparse network. Active weights in layer l of 

dense network.

Sparse Networks S , Dense Network D, Q^{l} is the weights in layer l and m^{l} is the mask applied to layer 
l.  

Ensure same number of nonzero weights in each layer for S and D. 

Goal: Ensure same number of nonzero weights in Sparse and Dense networks.  



Ensure Same Capacity
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Dense Network Sparse Network



Same Initial Dist
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This is done by using a normal (or uniform) distribution, with
- Same mean (e.g. 0 in He Init)  and 
- Scaling the variance of the sparse network (fan-ins/fan-outs) to the same 

variance as its equivalent dense network. 

Active weights in layer l of 
sparse network.

Active weights in layer l of 
dense network.

Initial weight distribution.



Same Initial Dist
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Same Capacity Sparse vs Dense 
Comparison (SC-SDC)
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Gradient Flow - Sparse networks.
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Forward

Backward

- Historically, exploding and 

vanishing gradients were a 

common problem in neural 

networks.

- Exasperated issue in sparse 
networks. [12,18]

- Therefore useful analysis tool 

for studying sparse network 

optimization. 

Intuition.



- Take the pth-norm:

- Concatenate all the gradients into a single vector:

- We consider a feedforward neural network:                                           

, with weights        and cost function C.  

Standard Gradient Flow
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- Gradient flow ≈ norm of the gradients of network. 

Example: L2 norm of gradients - 



Issues
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1. If you don’t mask the gradients -> gradients of masked weights 
included in formulation. 

2. Computing gradient norm by concatenating all the gradients into a 

single vector gives disproportionate influence to layers with more 
weights.



1. Masked Weights != Masked Gradients
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1. Masked Weights != Masked Gradients
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Not necessarily 0.



2. Disproportionate influence to layers with more weights.
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Simple CNN

Linear Layer - Majority of 
the weights and ->  
disproportionate impact on 
gradient norm. 



Effective Gradient Flow (EGF)
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Compare GF -> EGF
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- We train 600 MLPs for 500 epochs on Fashion-MNIST

- More than 10 000 MLPs for 1000 epochs on CIFAR-10 and 

CIFAR-100.  



MLP - Correlation Between Gradient Flow 
Measures and Generalization Performance
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*Lower bound - expect to see EGF >>> GF when used with CNNs. 



Potential Use Cases for EGF
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● More accurate analysis of sparse gradient flow.
● Possibility for Application in Gradient-based Pruning Methods

○ Gradient-based pruning methods like GRASP and SNIP have 
been to be susceptible to layer-collapse -> maybe EGF can 
help? 



Results - SC-SDC and EGF
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Results - EWMA vs Non-EWMA Optims
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Non-EWMA Optims

Adagrad

SGD

SGD + mom (0.9)

EWMA (Exponentially weighted 
moving average) Optims

RMSProp

Adam



Results - Acronym
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Average EGF - Average EGF calculated at the end of 11 epochs, evenly spread throughout the 
training. 

E.g. 1000 epochs, this is calculated at the end of epoch 0, 99, 199, 299, 399, 499, 599, 699, 799, 
899 and 999, and then compute the average.



1. Batch Normalization Plays a Disproportionate 
Role in Stabilizing Sparse Networks
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Batch Norm Stabilizes Grad Flow - Accuracy - 4hl
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Increasing Network Width / Capacity



Batch Norm Stabilizes Grad Flow - Gradient Flow - 4hl
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Batch Norm
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Activations of a layer. Minibatch Mean.

Minibatch Variance.

Learnable Parameters.



2. EWMA Optimizers Are Sensitive to High Gradient Flow
Accuracy
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2. EWMA Optimizers Are Sensitive to High Gradient Flow
Gradient Flow
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2. 1 Adam vs AdamWAdamW

Adam
AdamW

Adam



3. Activation Functions 
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Activation Functions - Accuracy 
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Activation Functions - Gradient Flow 
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Activation Functions 
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a) Activation Function with inputs [-5,5] b) Derivative of Activation Function with inputs [-5,5]

Allows flow of negative gradients.



Extension of Results 
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● Generalization of Results Across Architecture Types - Wide 
ResNet-50.

● Generalization of Results From Random Pruning to Magnitude 
Pruning.



Questions???
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Keep the Gradients Flowing: Using Gradient Flow 
to study Sparse Network Optimization. Kale-ab 
Tessera, Sara Hooker, Benjamin Rosman 

https://arxiv.org/abs/2102.01670

Key Takeaways:

❖ Need better toolbox for sparse network 
analysis - SC-SDC and EGF. 

❖ BatchNorm is useful for stabilizing grad 
flow - especially for sparse networks. 

❖ Move away from maximizing grad flow -> 
stabilizing gradient flow. 

❖ Careful choice of optims and activation 
functions can benefit sparse networks. 

kaleabtessera@gmail.com
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