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Multi-Agent Systems & Cooperation

Multi-Agent Systems are everywhere!
You don’t even have to leave your house.

Source: Warehouse Traffic Home Robots



https://nmbtc.com/blog/autonomous-warehouse-robots-help-alleviate-fulfillment-strain
https://www.wired.com/story/one-autonomous-car-prevent-traffic-jams/
https://techcrunch.com/2019/05/28/irobots-newest-mop-and-vacuum-talk-to-each-other-to-better-clean-up/
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Multi-Agent Coordination
)/00 Metq\ e LLM Debate can
improve reasoning
+ decpsec @ Division of labour
Gemini/ improves performance

on tasks such code
generation [5]

Automation -> Competitive (Financial Incentives) -> More
agents -> More interactions [2]

Specific Domains - Multi-Agent RL Agents Powered by LLMs 3


https://docs.google.com/file/d/1QNw-vZc5Jm-wBtWTxjOfP4YktE-Xecxe/preview

For MA/MARL to work

- Right baselines & environments {»
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HyperMARL: Adaptive Hypernetworks for Multi-Agent
RL

https://arxiv.org/abs/2412.04233



World is Big = Adaptatior:®
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Expect a lot -- adaptability -- different behaviou
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Javed, K. and Sutton, R.S., 2024. The big world hypothesis and its ramifications for artificial |nteII|
Finding the Frame Workshop at RLC 2024.



Adaptation: Individual Specialisation vs Shared Behaviours

Gameplay Football
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Source: Google Football, Search and Rescue, Robots, Birds, Fish.



https://arxiv.org/abs/1907.11180
https://blog.ml.cmu.edu/2021/06/04/decentralized-multi-robot-active-search/
https://nmbtc.com/blog/autonomous-warehouse-robots-help-alleviate-fulfillment-strain/
https://www.earth.com/news/bird-flocking-dynamics-inspire-advancements-in-technology/
https://roctopusecotrust.com/blog/104-noise-pollution-and-its-effect-on-schooling-fish.html

Efficient Adaptability in MARL

No Parameter Sharing (NoPS)
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Full Parameter Sharing (FUPS)

Pros
Cons
Scalable | _ _
No Garameter . Challenges at learning different
. behaviour for agents — specialisation.
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Current Approaches - Specialisation

. Architecture Based Approaches:
e Intrinsic Rewards based on Mi[Liet © Diversity Control (DiCo) [Bettini et

al., 2021,Jiang and Lu, 2021] al., 2024] allow control desired

encourage diversity in the objective. dlver;ny levels. rowledae of th

o Influence the learning objective. © etqu"’el zf'or _rt‘O‘IN e Ige of the

o Complicated implementations. optimal diversity leve

o Outperformed by FuPS and NoPS o Still need shared and non-shared
[Fu et al., 2022] | parameters.

e Kaleidoscope [Li et al.,2024] - leanable
masks.
o Still requires diversity
loss/objective
o Many hyperparms, complicated,
delicate implementation. 10



Goal:

% Can we develop a general purpose
method that adapts to both
specialisation and homogenous
behaviours?

% Can we do this without

>

>

>

% Using a shared architecture.

Goal: Universal/Adaptive MARL Architecture

interfering with the learning
objective?

knowing the optimal diversity
level?

requiring sequential updates?

1



Problem: Parameter Sharing * Specialisation

Coupling agent-IDs and observations = higher gradient interference

. = Loss
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Hypernetworks

layer index
and other information
about the weight

Figure 1: A hypernetwork generates the weights for a feedforward network. Black connections
and parameters are associated the main network whereas orange connections and parameters are
associated with the hypernetwork.

Ha D, Dai AM, Le QV. HyperNetworks. ICLR 2022
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HyperMARL

Tessera, K.A., Rahman, A., Storkey, A. and Albrecht, S.V., 2025. HyperMARL: Adaptive Hypernetworks for Multi-Agent RL.
CoCoMARL Workshop at RLC 2025 & NeurlPS 2025.

14


https://docs.google.com/file/d/1pFBE_9vq0JlYjBgncJBAmzBqeXgcgMn_/preview

HyperMARL - Agent Conditioned Hypernetworks
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HyperMARL.: Gradient Decoupling

Weights of hnets
V@(};J(TP) = Z{:l V@f.fhii(ei) En, a;~n [A(hf’ at) Vg log my (a; | h;)‘

/ . _/

Vv vV
J; (agent-conditioned) Z; (observation-conditioned)

< Agent-conditioned: deterministic wrt to mini-batch samples, separating agent
identity from traj noise.

% Observation-conditioned: averages trajectory noise per agent.

16



Many Environments - Some Test Specialisation,
Homogenous Behaviours, Mixed
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*Large confidence interval, but shows that a shared representation (HyperMARL) is
comparable to non-shared methods (HAPPO and Independent Actors).

18



Ablations -

Hypernetwork
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Ablations - Decoupled Grads
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Ablations - Agent Embeddings - Match Goal

Same Goals

Mean Cosine Distance

Agent Embedding Similarity by Goal Condition

--Initialization: 1.0

[

Same Goals Different Goals

21


https://docs.google.com/file/d/1OHmZMw20xjVlJRHSquU2bc89k38b0dOl/preview

Ablations - Agent Embeddings - Match Goal

Same Goals
Agent Embedding Similarity by Goal Condition

---Initialization: 1.0
1.025

Diff Goals

Mean Cosine Distance

Same Goals Different Goals


https://docs.google.com/file/d/1OHmZMw20xjVlJRHSquU2bc89k38b0dOl/preview
https://docs.google.com/file/d/1bd7v-O2nk-mdvYb-bSusILXE1DoD2U4t/preview

Takeaway

Simple Idea:

o Gradient decoupling is a key ingredient in mitigating cross-agent

interference — correlates with a lower grad variance.
Simple Implementation:

o Agent-conditioned Hypernetworks can achieve gradient decoupling —
possible to learn adaptive behaviour, across diverse tasks, without
altering the learning objective, preset diversity levels or sequential
updates.

Challenges:
o #params -> chunked hypernets or low-rank approximations.

23



Current MARL Baselines ¢

Remembering the Markov Property in Cooperative
MARL

https://arxiv.org/abs/2507.18333

24



Problem

We know multi-agent systems are and will be everywhere.
Therefore, we need to be able to adequately measure progress:

We need virtual MA environments that test properties of MA systems that we care
about.

25



What is Multi-Agent Anyways?

26



What is Multi-Agent Anyways?
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MARL

1. Partial Observability - Agents can’t see the full world.

2. Decentralised execution - agents can act based on their own obs.

28



Cooperative MARL - Dec-POMDPs
Cooperative MA Problems: Dec-POMDP:

(N7 Sa T, @7 Moy {Ai}z’ENa {Oi}z’ENa R, ’7)

Action of all agents.

T(SH—I | St at) ............................... If env is in state s_t and joint action a_t, what is
the distribution of future state.

7 = argmaxy By, am (2500 7 R(51, 1))

29



Cooperative MARL - Dec-POMDPs

Partial Observability (POMDPs, Dec-POMDPs) — Agents receive
incomplete information about the state of the environment.
Typically modelled by using memory or recurrency.

Decentralised execution - agents can act based on their own obs.

30



Markov Property

A Dec-POMDP has the Markov property if the current state contains all relevant information
for predicting the future [6,7].

Formally, this means the transition dynamics do not depend on the full history:

T(8t+1 ‘ staat) — T(SH—I | Sty Aty St—1yAt—14 - °°7SO)aO)

But in Dec-Pomdps, you don’t have access to full state!

* Lots of RL learning methods rely on Markov Prop.

31



Partial Observability - Effective MDP

32



Partial Observability - POMDPs

33



Partial Observability - POMDPs
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If you can't see, you must remember
34



Partial Observability - Dec-POMDPs

35



Partial Observability - Dec-POMDPs - Predict
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Figure 5: Example EPO enemy sight-
ing. Allied units that do not observe the
enemy are shown in blue, those that do
are shown in green and the enemy unit
in dark red. Initially, an ally spots an
enemy. Later (right), when the enemy
1s within all allied sight ranges, only the
first ally to observe the enemy and the
ally for which the draw was successful
can see it.

Partial Observability - Dec-POMDPs - Private Information

Needs private information from
other agents)

“Meaningful Partial Observability”
(Ellis et al. ). Part of the proof that
planning in Dec-POMDPs is
NEXP-complete with n>=2 agents
(Bernstein et al.).

37



Decentralisation

Easy: Decentralised, but no coordination required.

Medium: Agents need to coordinate with other agents.

Hard: Medium + Agents need to predict the actions/behaviour of other
agents to coordinate on tasks (other agent’s non stationary).

38



MARL Environments - Prop of Cooperative MA Problems

Mutual Information

O' A Dependence between action and obs.
( ) Are agents using their observations?

Dependence between hist (rnn hidden state) and obs.
H(H ] A) Are agents using their histories?

How much extra information does agent i’s history/hidden state,
(a ‘h ) provide about agent j actions, excluding what we know from
J? agent j history?
Do agents have private information relevant to others?
How much extra information does agent i’s final layer (2)
]I(At.+1 . Zz; |Zt-) representation provide about agent j's next action, excluding
J 1?7177 37 what we know from agent j's final layer representation?
Are agents predicting each others’ actions? 39



Metrics for MA Coordination

%  Partial Observability (POMDPs, Dec-POMDPs) — Agents receive incomplete information about the
state of the environment. Typically modelled by using memory or recurrency.

>

>

Easy: Env is not really partially observable.

m Measure: Return(RNN) = Return(MLP); I(H;A| O) =0
Medium: When hidden information is relevant to the task and cannot be inferred from the
single observations alone. This is also the case in single-agent POMDPs.

m  Measure: Return(RNN) > Return(MLP); I(H;A | O) >0
Hard: Medium + cannot be resolved by a single agent in isolation (needs private information
from other agents).

m  Measure: Medium + I(a_j; h_i | h_j)>0

% Decentralisation (Dec-POMDPs)/Coordination — Agents need to be able to act based on their local
history of observations and/or actions.

>

Easy: Decentralised, but no coordination required.
m  Measure: Return(IPPO) = Return(MAPPO);
Medium: Agents need to coordinate with other agents.
m Measure: Return(MAPPO) > Return(IPPO)
Hard: Medium + Agents need to predict the actions/behaviour of other agents to coordinate on
tasks.
m  Measure: Medium + I(A_jMt+1}; Z_i*t | Z_j*M)/ linear probe Z_i*M -> A_jA{t+1}

40



Metrics for MA Coordination

Question

i) Is Partial Observability relevant to the
task?

ii) Is Partial Observability reliant on private
information across agents?

iii) Is Coordination non-trivial?

iv) Does Coordination require the prediction
of other agents’ actions?

ENV

41



Case Study: Brittle Conventions vs. Robust Coordination
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Case Study: Brittle Conventions vs. Robust Coordination

- B B B wo i & @
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(b) Scenario A: Co-adapting (c) Scenario B: Mixed
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Case Study: Scenario A
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MARL Environments - Why are “blind conventions” bad?

Individual Prediction Accuracy Over Time

1.0

Multi-Agent Game - Episode 1, Step 0
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agent_0 agent_1 agent_2 agent_3
(Learning) (Learning) (Learning) (Learning)
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MARL Environments -

(b) A homogeneous setup with four learn-
ing agents.

Cycle: 3 Cycle: 4
wo h BB
\' 1 4 ‘ 2 @ @
" ) Heuristic Agents O Learning Agents

(c) A heterogeneous setup with two learn-
ing and two heuristic agents.

Why are “blind conventions” bad?

Scenario RNN FF
Baseline 9.97 (9.92, 10.03) 9.59 (9.55, 9.63)
Add Heuristic  4.80 (4.41,5.20) 4.04 (3.26, 4.81)

- Brittle to stochastic changes in env.
- Not robust to partners.
- Poor generalisation.

46



Case Study: Scenario B
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MARL Environments - Why are “blind conventions” bad?

Same method, but the mechanism for success changes with environment modifications
(partner composition).

Implication: Current MARL environments may enable fragile co-adaptation rather than
robust cooperation.

v

Partial observability become not relevant to
the task — allowed forming on conventions.

What kind of equilibria does your
environment make easy to find (attractive)?

48



MARL Environments

Hanabi Overcooked

MPE

ERCOm-<C8 .
LT ) S :

MaBrax

SMAX v1 & v2
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MaBrax MARL Environments
1. Policies grounded in obs/hist )
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MARL Environments
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Summary

SMAX v1

SMAX v2

MaBrax

Hanabi

Overcooked

Is PO relevant?

Is PO reliant on
private
information?

Is Coordination
non-trivial?

Does
Coordination
require
anticipating
others?

53



Summary

We will increasing be seeing more Multi-Agent systems in practise, therefore
it is important to measure progress in these settings using environments that
test properties we want.

Design of environments have implications in the what behaviours is easy to
learn i.e. attractive optima.

54



W

Limitations & Next Steps

Single algorithm (IPPO) with MLP and RNN (GRU) architectures. Claims specific and
not board. Include more Multi-Agent algorithms such as MAPPO & expand
environments.
Measures:
a. I(O,A) and I(H,A) - since obs and H are correlated, switch to conditional Ml

i. 1(O,A|H) - policies grounded in obs

ii. I(H,A|O) - are policies relying on memory?
b. Distengle recurrent reasoning

i. Used for reconstructing state or predicting other agents actions - use ideas

from linear probing e.g. (Mon-Williams et al., 2025).

c. Only measuring Ml at end? We should measure over time. — Not fair!
What are properties of the dec-pomdp vs properties of the learning algorithm vs both?
Measures for coordination?
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Questions &/or Comments

56
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