
Intro to Reinforcement Learning
University of Pretoria

By Kale-ab Tessera, Divanisha Patel and Arnu Pretorius.
May, 2023

Overview
❖ Why RL
❖ RL Flow and Intuition
❖ RL Formalism
❖ Q-Learning
❖ Deep Q-Learning
❖ RL at InstaDeep

Why RL

Go

Strategy board game where two players try to
surround opponents pieces.

Likely the world's oldest board game, is thought to
have originated in China 4,000 years ago. [1]

Attempts to solve Go!

● Many attempts to solve, but unsuccessful.
● Number of configurations of board - 10^170 -

“more than number of atoms in the universe” -
Alpha GO (chess - ~10^50 possible positions)

Image, 1] https://www.britannica.com/topic/go-game

https://en.wikipedia.org/wiki/File:FloorGoban.JPG

AlphaGo - Deep RL Based Computer Program Plays Go

MCTS (Monte Carlo Tree
Search)

Database of Expert Knowledge
(~30 million moves) + Self-Play

RL Problem

Mastering the game of Go with deep neural networks and tree search

AlphaGo - 2016 - Beat World Champion

"I thought AlphaGo was based on probability
calculation and that it was merely a machine. But
when I saw this move, I changed my mind. Surely,
AlphaGo is creative."

- Lee Sedol - Winner of 18 world Go titles

AlphaZero - Learn from Self-Play (No Human Knowledge)

AlphaZero

No Database of Expert
Knowledge

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

MuZero - Mastering Go, chess, shogi and Atari without
rules

MuZero

Dynamics/Rules of the Game.

Real world settings - the rules
or dynamics are typically
unknown and complex.

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules

Beyond Games

MuZero - YouTube to optimise video compression

MuZero Youtube

https://deepmind.com/blog/article/MuZeros-first-step-from-research-into-the-real-world

RL at InstaDeep

Pack items more
efficiently to improve
supply chain logistics

Save money on transport costs for
large shipments

Design complex printed
circuit boards in less than

24 Hours

Accelerates the product cycle in IOT
and consumer electronics

DeepPackTM
(Logistics/Supply Chain)

 DeepPCBTM

 (Hardware/IOT)

DeepRailTM

(Fleet Management)

Optimize train scheduling
and mobility fleet

management
Reduces passenger delays, better yields on

infrastructure projects

RL Flow and Intuition

Practical Setting - Robot Playing Football

Reinforcement Learning (RL) Loop

Environment:

● The system we care about - returns our
reward signal.

● What our “agent” sees and interacts with.

Reinforcement Learning (RL) Loop

Agent:

● Interacts with the environment.
● Entity that makes decisions, adapts

and learns.

Reinforcement Learning (RL) Loop

Take action from available actions.

Receive state from possible states.

Receive reward.

Reinforcement Learning (RL) Loop

GOAL: +1

Reinforcement Learning (RL) Loop

GOAL: +1
GOAL: -1

Reinforcement Learning (RL) Loop

…

GOAL: +1
 GOAL: -1

GOAL: +1

● SL - One-shot

20

RL compared to Supervised Learning (SL) - Decisions

● RL - Sequential

Cat

21

RL compared to Supervised Learning - Training

● SL - Learn from labelled examples.

Training Dataset.
Labelled examples.

● Learn from interacting with an environment.

22

RL compared to Supervised Learning - Training - Trial and Error

Environment/Simulator
- Reward signal.
- Possible states and actions.
- Rules or dynamics of the

environment.

● SL - Performance on Test Set
(e.g. Test Accuracy/Loss).

23

RL compared to Supervised Learning - Objectives

Train Data

Test Data

● RL - Maximize Cumulative
Reward (Return).

Score at the End
100:0

e.g. test accuracy 78%. e.g. return is 100 (scored 100 goals in a match)
or mean episode return is 50 (played two
games - game 1 scored 75, game 2 scored 25).

RL is goal-directed learning from interaction (trial and error).
Learn - what to do (how to map situations to actions, as to

maximize a numerical reward).

RL agent-environment interaction loop

Reinforcement Learning (RL)

RL Formalism

26

Markov Decision Process (MDP)

MDPs: Formal way to describe an RL environment (or any sequential
decision-making systems).

Markov Property: Transitions only depend on the most recent state and action,
and no prior history (current state contains all necessary information).

Probability of next state given current state = Probability of next state given whole history

“|” - Given

27

Markov Property

Chess - Markovian.

Which direction is the ball going?Do we need history for Chess?

Atari Breakout - Not Markovian.

28

Markov Decision Process (MDP)

29

S - state space - is a finite set of states.

s ∈ S , full description/representation of the environment
at a particular time (discrete or continuous).

x 0 0 0

0 B B 0

… … … …

0 0 0 T

e.g.

where x - agent, T - terminal, B - blocked, 0 - open space.

Markov Decision Process (MDP)

30

A - action space - is a finite set of actions.

a ∈ A , what our agent does (discrete or
continuous).

e.g.
1. LEFT= 0
2. DOWN = 1
3. RIGHT = 2
4. UP = 3

Markov Decision Process (MDP)

31

T - transition probability.

Deterministic

If you decide to go left you'll go left.

Stochastic

Probability distribution over transitions e.g. if you
decide to go left, you will go left 50% of the time, stay
in your location 50% of the time.

Markov Decision Process (MDP)

32

⃜⃜

d0 - distribution of initial states - do
you always start in the same place?

Markov Decision Process (MDP)

33

r - reward function - how good our
current state/action was.

Markov Decision Process (MDP)

r(,)

34

𝛾 ∈ [0,1] is a discount factor, that
penalise rewards in the future.

Markov Decision Process (MDP)

Policy: Mapping from states to actions.

Policy - Agents - What to Do

Deterministic: Stochastic:

In Deep RL - policies are parameterized by the weights of Neural Network 𝛩:

36

Trajectory

Markov Decision Process (MDP)

37

Trajectory

Trajectory distribution

Markov Decision Process (MDP)

38

Trajectory

Trajectory distribution

Markov Decision Process (MDP)

Policy

Probability of a specific trajectory.

Product notation.

39

Return vs Reward

Reward - how good our current state/action is.

Return - expected cumulative reward over time.

40

RL Objective

Trajectory sampled from trajectory
distribution according to policy.

Return (reward over time) following these
trajectories.

Maximise the total expected return per episode.
E.g. football - score most goals in a match or over many matches.

Sum of rewards weighted by their probability.

41

How our agents learns - Value

Value: What is good in the long run.

Value of state(s) /state-action (s,a): How good is the s or s,a pair, i.e. the expected
return (G_t) if you start at s or s,a and then act according to your policy.

State-value function:

Action-value (Q) function:

Efficiently estimating values is critical to RL.

(,)

Kinds of RL Algorithms (Model-free)

Value-Based Methods Policy-Based Methods Actor-Critic Methods

L
E
A
R
N

A
C
T

Actor

Critic

E.
G. DQN. Reinforce. A2C/A3C, DDPG,

PPO, etc.

43

Dynamic Programming - Bellman Equation

Value functions can be split into 2 parts:

Immediate Reward. Discounted value of next state.

44

Dynamic Programming

Bellman Operator

45

Policy Iteration

States

A
ct

io
ns

46

Policy Iteration

Policy Evaluation (Prediction)

States

A
ct

io
ns

47

Policy Iteration

Policy Evaluation (Prediction) Policy Improvement (Control)

States

A
ct

io
ns

48

Policy Iteration

Policy Evaluation (Prediction) Policy Improvement (Control)

States

A
ct

io
ns

49

Policy Iteration

Policy Evaluation (Prediction) Policy Improvement (Control)

States

A
ct

io
ns

Sutton and Barto, 2018.

50

Value Iteration

Bellman Optimality Equation

51

Value Iteration

Bellman Optimality Equation

52

Value Iteration

Bellman Optimality Equation

Need a model

53

Value Iteration

Bellman Optimality Equation

54

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate
using samples

55

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate
using samples

56

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate
using samples

57

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Incrementally estimate
using samples

TD Error

58

Q-Learning (Off-policy TD Learning)

Update the value estimates in part based on other estimates: “Learning a guess
from a guess”.

TD Error

Old Estimate. Old Estimate.Target

Step Size.

59

Q-Learning (Off-policy TD Learning)

Link

https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning

60

Q-Learning (Off-policy TD Learning)

Link

https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning

61

Q-learning in large state spaces?

Tabular RL does not scale to large complex problems:
● Too many states to store in memory
● Too slow to update and estimate values for each state

Need to use an approach able to generalise across many states

Approx. Dynamic Programming
using function approximation

63

The goal of function approximation

Approximate the values of states using a parameterised function

64

The goal of function approximation

Approximate the values of states using a parameterised function
● Input: state features

65

The goal of function approximation

Approximate the values of states using a parameterised function
● Input: state features
● Output: estimated Q-values

66

The goal of function approximation

Approximate the values of states using a parameterised function
● Input: state features
● Output: estimated Q-values

67

The goal of function approximation

Approximate the values of states using a parameterised function
● Input: state features
● Output: estimated Q-values
● Target: reward to go

68

Approximate Dynamic Programming

69

Approximate Dynamic Programming

70

Approximate Dynamic Programming

Typically a deep
neural network

71

Approximate Dynamic Programming

Typically a deep
neural network

Why?

72

Approximate Dynamic Programming

Typically a deep
neural network

Why?

● Known to discover useful features

73

Approximate Dynamic Programming

Typically a deep
neural network

Why?

● Known to discover useful features

74

Approximate Dynamic Programming

Typically a deep
neural network

Why?

● Known to discover useful features

● Wealth of research in DL that can be
directly be applied to RL

75

Approximate Dynamic Programming

Typically a deep
neural network

76

Approximate Dynamic Programming

77

Approximate Dynamic Programming

Controls policy
improvement step

78

Approximate Dynamic Programming

Controls policy
evaluation step

79

Approximate Dynamic Programming

80

Approximate Dynamic Programming

81

Approximate Dynamic Programming

Prediction Target

82

Approximate Dynamic Programming

Prediction Target

Target network
note parameters do

not depend on g

83

Approximate Dynamic Programming

Prediction Target

84

Approximate Dynamic Programming

Prediction Target

85

Approximate Dynamic Programming

Prediction Target

TD Error

86

Approximate Dynamic Programming

Prediction Target

TD Error

87

Approximate Dynamic Programming

Prediction Target

TD Error

Squared-error loss as in supervised learning

88

Approximate Dynamic Programming

Prediction Target

TD Error

Squared-error loss as in supervised learning

89

Approximate Dynamic Programming

Prediction Target

TD Error

Squared-error loss as in supervised learning

Sum over
transition data

90

Approximate Dynamic Programming

91

Approximate Dynamic Programming

92

Approximate Dynamic Programming

Update the parameters using gradient descent

93

Approximate Dynamic Programming

Update the parameters using gradient descent

94

Approximate Dynamic Programming

Update the parameters using gradient descent

95

Approximate Dynamic Programming

96

Approximate Dynamic Programming

97

Approximate Dynamic Programming

Approximate
Policy Evaluation

98

Approximate Dynamic Programming

Approximate
Policy Evaluation

99

Approximate Dynamic Programming

Approximate
Policy Evaluation

Act (𝜀) greedy with
respect to new

parameters

100

Approximate Dynamic Programming

Approximate
Policy Evaluation

Approximate
Policy ImprovementAct (𝜀) greedy with

respect to new
parameters

101

Approximate Dynamic Programming

Act (𝜀) greedy with
respect to new

parameters

Approximate
Generalised Policy

Iteration

102

Generic Q-learning algorithm

103

Generic Q-learning algorithm

104

Generic Q-learning algorithm

105

Generic Q-learning algorithm

106

Generic Q-learning algorithm

107

Generic Q-learning algorithm

108

Generic Q-learning algorithm

109

Generic Q-learning algorithm

110

Generic Q-learning algorithm

111

Generic Q-learning algorithm

112

Generic Q-learning algorithm

113

Generic Q-learning algorithm

114

Generic Q-learning algorithm

115

Generic Q-learning algorithm

116

Generic Q-learning algorithm

117

Generic Q-learning algorithm

118

Generic Q-learning algorithm

119

Generic Q-learning algorithm

Deep Q-Networks
as special case of generic Q-learning

121

Deep Q-Networks

Stability Issues with Deep Q-Networks

Human-level control through deep reinforcement learning, V. Mnih et al, nature 2015

Naive Q-Learning oscillates or diverges with neural
networks:

❏ Data is sequential:
Successive sample are correlated, non-iid.

❏ Policy changes rapidly with slight changes to
Q-values

❏ Scale of rewards and Q-values is unknown
Naive Q-learning gradients can be large and unstable when
backpropagated.

❏ Exploration is greedy

DQN provides a stable solution to deep
value-based RL:

❏ Use experience replay
Break correlations in data, bring us back to iid setting
Learn from all past policies

❏ Freeze target Q-network
Avoid oscillations
Break correlations between Q-network and target

❏ Clip rewards or normalize network adaptively
to sensible range
Robust gradients

❏ Use Epsilon Greedy Exploration

123

Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

124

Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

(until convergence)
(sampling size is a hyperparameter)

125

Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

(until convergence)
(sampling size is a hyperparameter)

Deep Q-Networks (Mnih et al., 2013)
, , (all hyperparameters)

Collect transitions and run gradient steps concurrently
Sample random batches from experience replay decorrelate transitions
Lagging update of target network fix target network to stabilise learning

126

Deep Q-Networks results

http://www.youtube.com/watch?v=TmPfTpjtdgg

Next steps?
Deep RL Prac

© Copyright 2023 InstaDeep.com. All Rights Reserved.

Other excellent sources:

● Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto
● OpenAI Spinning Up
● David Silver UCL Course

https://github.com/deep-learning-indaba/indaba-pracs-2022/blob/main/practicals/introduction_to_reinforcement_learning.ipynb
http://incompleteideas.net/book/the-book-2nd.html
https://spinningup.openai.com/en/latest/
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ&ab_channel=GoogleDeepMind

Questions?

