»InstaDeep™

Intro to Reinforcement Learning

University of Pretoria

By Kale-ab Tessera, Divanisha Patel and Arnu Pretorius.
May, 2023

UNIVERSITEIT VAN PRETORIA
UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

Overview

7/ / / /7 /7 /
LS X AR X S X QI X S X

Why RL

RL Flow and Intuition
RL Formalism
Q-Learning

Deep Q-Learning

RL at InstaDeep

Why RL

Strategy board game where two players try to
surround opponents pieces.

Likely the world's oldest board game, is thought to
have originated in China 4,000 years ago. [1]

Attempts to solve Go!

Many attempts to solve, but unsuccessful.
Number of configurations of board - 107170 -
“more than number of atoms in the universe” -
Alpha GO (chess - ~10*50 possible positions)

Image, 1] https://www.britannica.com/topic/go-game

i)lnstaDeep"‘

https://en.wikipedia.org/wiki/File:FloorGoban.JPG

AlphaGo - Deep RL Based Computer Program Plays Go

Database of Expert Knowledge
(~30 million moves) + Self-Play

MCTS (Monte Carlo Tree

Search)

RL Problem

& &

4440t bbtb bt sdse
1 832922888888¢

bbbt bbb 4
©0000800000¢ +o

: +++++++++++++o$o¢
8900080000006 .
++++++++++++¢+¢

) gt bt bbbt bbb oGy

1002009220808

Mastering the game of Go with deep neural networks and tree search

i)lnstaDeep"‘

AlphaGo - 2016 - Beat World Champion

"l thought AlphaGo was based on probability
calculation and that it was merely a machine. But
when | saw this move, | changed my mind. Surely,
AlphaGo is creative."

Lee Sedol - Winner of 18 world Go titles

i;' InstaDeep™

AlphaZero - Learn from Self-Play (No Human Knowledge)

No Database of Expert
Knowledge

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

MuZero - Mastering Go, chess, shogi and Atari without
rules

Dynamics/Rules of the Game.

Real world settings - the rules
or dynamics are typically
unknown and complex.

MuZero

https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules

Beyond Games

DInstaDeep™

MuZero - YouTube to optimise video compression

.

MuZero Youtube

https://deepmind.com/blog/article/MuZeros-first-step-from-research-into-the-real-world

RL at InstaDeep

DeepPCB™

(Hardware/IOT)

Design complex printed
circuit boards in less than
24 Hours

Accelerates the product cycle in I0T
and consumer electronics

DeepPack™

(Logistics/Supply Chain)

Pack items more
efficiently to improve
supply chain logistics

Save money on transport costs for
large shipments

DeepRail™

(Fleet Management)

Optimize train scheduling
and mobility fleet
management

Reduces passenger delays, better yields on
infrastructure projects

[>InstaDeep™

RL Flow and Intuition

DInstaDeep™

Practical Setting - Robot Playing Football

i} InstaDeep™

Reinforcement Learning (RL) Loop

Environment:

e The system we care about - returns our
reward signal.
e What our “agent” sees and interacts with.

i} InstaDeep™

Reinforcement Learning (RL) Loop

Agent:

e Interacts with the environment.
e Entity that makes decisions, adapts
and learns.

i} InstaDeep™

Reinforcement Learning (RL) Loop

S E S Receive state from possible states.

) Receive reward.

/ a E A Take action from available actions. i>|nstaDeep""

Reinforcement Learning (RL) Loop

r s

-

i} InstaDeep™

Reinforcement Learning (RL) Loop

T s a r S

tGOAr ﬂ @ o

i} InstaDeep™

Reinforcement Learning (RL) Loop

i} InstaDeep™

RL compared to Supervised Learning (SL) - Decisions

e SL - One-shot e RL - Sequential
HIIJIJEN‘ D_) D
P :nuwur D
N > | 0—0

[>InstaDeep™

RL compared to Supervised Learning - Training

e SL - Learn from labelled examples.

GET

Classification problem

Model j

> T [aminibanis e

fnto the model.

&
n- -

»

Training Dataset.
Labelled examples.

(8) model predicts and
calculates a loss. For
example, accuracy 10%,
or 80% or 3%, or 100%.

i;‘ InstaDeep™

RL compared to Supervised Learning - Training - Trial and Error

Learn from interacting with an environment.

Environment/Simulator
- Reward signal.
- Possible states and actions.
- Rules or dynamics of the
environment.

~

i)lnstaDeep"‘

RL compared to Supervised Learning - Objectives

e SL - Performance on Test Set e RL - Maximize Cumulative
(e.g. Test Accuracy/Loss). Reward (Return).

Train Data

Test Data

e.g. test accuracy 78%. e.g. return is 100 (scored 100 goals in a match)
- or mean episode return is 50 (played two

games - game 1 scored 75, game 2 scored 2_5).
|>InstaDeep™

Reinforcement Learning (RL)

RL agent-environment interaction loop

AGENT ENVIRONMENT
-State s €S

- Take action a € A

-Getreward 7 g
-Newstate s’ € S

RL is goal-directed learning from interaction (trial and error).
Learn - what to do (how to map situations to actions, as to i
maximize a numerical reward). P> InstaDeep

RL Formalism

DInstaDeep™

Markov Decision Process (MDP)

MDPs: Formal way to describe an RL environment (or any sequential
decision-making systems).

Markov Property: Transitions only depend on the most recent state and action,
and no prior history (current state contains all necessary information).

‘" - Given

]P)[St—f—l“.st] = P[St—}—llsla mis =) St]

Probability of next state given current state = Probability of next state given whole history

L InstaDeep™

Markov Property

Do we need history for Chess? Which direction is the ball going?

Chess - Markovian. Atari Breakout - Not Markovian.

i) InstaDeep™

Markov Decision Process (MDP)
M = (87 Aa T7 dOa r, ’7)

i)lnstaDeep"‘

29

Markov Decision Process (MDP)
M = (‘Sa Aa T7 dOa r, ’7)

S - state space - is a finite set of states.

s € §, full description/representation of the environment
at a particular time (discrete or continuous).

e.g. X 0 0 0

0 B B 0

0 0 0 T

where x - agent, T - terminal, B - blocked, O - open space.

i)lnstaDeep"‘

30

Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

A - action space - is a finite set of actions.

a € A, what our agent does (discrete or
continuous).

g.
1.LEFT=0

2. DOWN =1
3. RIGHT =2
4.UP=3

o o OH O

i)flnstaDeep"“

31

Markov Decision Process (MDP)
M = (‘57 A) T7 dOa r, ’7)

T - transition probability.

P(s'|s,a) = P[Sy1 = &'|S; = 8, A; = a]

Deterministic
If you decide to go left you'll go left.
Stochastic

Probability distribution over transitions e.qg. if you
decide to go left, you will go left 50% of the time, stay
in your location 50% of the time.

i) InstaDeep™

Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

dO - distribution of initial states - do
you always start in the same place?

i)flnstaDeep"“

Markov Decision Process (MDP)
M = (‘57 A) T7 dOa r, ’7)

r - reward function - how good our
current state/action was.

i) InstaDeep™

Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

y € [0,1] is a discount factor, that
penalise rewards in the future.

i)flnstaDeep"“

Policy - Agents - What to Do

Policy: Mapping from states to actions.

Deterministic: Stochastic:

7r(a|s) = P[A; = a|S; =]

a ~ mw(A|s)

In Deep RL - policies are parameterized by the weights of Neural Network ©:

TG

Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

Trajectory

T = (507307°"7SH7aH)

i)flnstaDeep"“

Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

Trajectory

T = (507a07°"7SH7aH)

Trajectory distribution
H
pr (1) = do(so) | | w(aslst)T(se11lst, a)
t=0

i)flnstaDeep"“

38

Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

Trajectory

T = (507a07°"7SH7aH)

. . . Product notation.
Trajectory distribution

pw.(T) = do(s0) H'ﬁ(at|st)T(St+1|St, a)

Policy

Probability of a specific trajectory.

i)flnstaDeep"“

Return vs Reward

Reward - how good our current state/action is.
re = 1(5¢,04)

Return - expected cumulative reward over time.

R;i(1) = Sf—z YT

i‘: InstaDeep™

40

RL Objective

J(m) =

Sum of rewards weighted by their probability.

()]

Trajectory sampled from trajectory
distribution according to policy.

Return (reward over time) following these
trajectories.

Maximise the total expected return per episode.
E.g. football - score most goals in a match or over many matches.

i;f InstaDeep™

How our agents learns - Value

Value: What is good in the long run.

Value of state(s) /state-action (s,a): How good is the s or s,a pair, i.e. the expected
return (G_t) if you start at s or s,a and then act according to your policy.

State-value function:

Erp, (rls) [B(7)|50 = 8]

Action-value (Q) function: ()

Efficiently estimating values is critical to RL.
i) InstaDeep™

Kinds of RL Algorithms (Model-free)

/ Value-Based Methods \\ Policy-Based Methods | Actor-Critic Methods
PSP I S wor mplals)
e Qo(s,a) T (als) Toa

Al

R Critic Qw (87 a’)

N

é - o =argmaz ((s,a) a ~ my(als) a ~ my(als)

T

Bvos

" DQN. i Reinforce. . A2C/A3C, DDPG,
G\ // | PPO, etc.)
' ' > InstaDeep™

Dynamic Programming - Bellman Equation

Value functions can be split into 2 parts:

Q" (s,a) = Ex[r(s,a) +vQ" (s¢41,a41) | St = s, Ay = a

"

Immediate Reward.

AN

Discounted value of next state.

i)lnstaDeep"‘

Dynamic Programming

Bellman Operator

é?‘l’ — B?TQ—’W

44

limg_ o0 éw — éw

i) InstaDeep™

Policy Iteration

States
. Q 0 1 2 3
S 0 15 | -0.2 1.2 5.7
< 1 4.2 21 2.7 6.1

45

t InstaDeep™

Policy Iteration

Actions

46

States
Q 0 1 2 3
0 15 | -0.2 1,2 5.7
1 4.2 2.1 2.7 6.1

Policy Evaluation (Prediction)

k—l—l - BWQk

i; InstaDeep™

Policy Iteration

States
. Q 0 1 2 3
S 0 15 | -0.2 1.2 5.7
< 1 4.2 21 2.7 6.1

Policy Evaluation (Prediction)

k—l—l - BWQk

47

Policy Improvement (Control)

m(auls.) = d(a, = argmax Q(sy, a))

i; InstaDeep™

Policy Iteration

Actions

48

States
0 1 2 3
-1.5 -0.2 1.2 5.7
4.2 -2.1 2.7 6.1

Policy Evaluation (Prediction) ﬁ

k—l—l - BWQk

)

Policy Improvement (Control)

m(auls.) = d(a, = argmax Q(sy, a))

i‘, InstaDeep™

Policy Iteration

States
. Q 0 1 2 3
S 0 15 | -0.2 1.2 5.7
< 1 4.2 21 2.7 6.1

Vs y T

Policy Evaluation (Prediction) ﬁ

k—l—l - BWQk

49

%teedy(v)
™= Sutton and Barto, 2018.

Policy Improvement (Control)

m(a¢|sy) = d(a; = argmax Q(s¢, ay))

i‘: InstaDeep™

Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

50

i) InstaDeep™

Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

i) InstaDeep™

51

Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

- A A,

Need a model o o e e«

i) InstaDeep™

59

Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

i) InstaDeep™

519

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) lgﬁf Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Target - OldEstimate]

i} InstaDeep™

54

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) lgﬁf Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Target - OldEstimate]

i} InstaDeep™

55

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) [gi‘ff Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Ta,rget - OldEstimate]

i) InstaDeep™

56

Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) [gi‘ff Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Ta,rget - OldEstimate]

\ J
Y

TD Error

i) InstaDeep™

57

Q-Learning (Off-policy TD Learning)

Update the value estimates in part based on other estimates: “Learning a guess

from a guess”.

Q(st,at) < Q(s¢,a¢) + a(T(St,at) +ymax, Q (s¢+1,a) — Q(Staat))

/

Old Estimate.

Step Size.

AN

Target

Old Estimate.

J

TD Error

i;f InstaDeep™

Q-Learning (Off-policy TD Learning)

Game Board: Q Table: y=0.95
[, 000 000 000 100 010 001
2 100 010 001 000 000 000

]
{
=
&=

C
-]
=

i)flnstaDeep"“

https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning

Q-Learning (Off-policy TD Learning)

Game Board: Q Table: y=0.95
f' 000 000 000 100 010 001
i 100 010 001 000 000 000
G 02 | 03 | 1.0 |-022| -03 | 00
Current state (s): ggg 05 | 04 | 042 |-004 | 002 | 00

]
4
) | 0.21 0.4 -0.3 0.5 1.0 0.0
=

-06 | 01 | -01 | -0.31 | -0.01 | 0.0

C
-]
=

i)lnstaDeep"‘

60

https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning

Q-learning in large state spaces?

Its state space is comprised of four variables:
« The cart position on the track (x-axis) with a range from -2.4 to 2.4
» The cart velocity along the track (x-axis) with a range from —inf to inf
« The pole angle with a range of ~—40 degrees to ~ 40 degrees
« The pole velocity at the tip with a range of —inf to inf

Tabular RL does not scale to large complex problems:
e Too many states to store in memory
e Too slow to update and estimate values for each state

Need to use an approach able to generalise across many states

i: InstaDeep™

Approx. Dynamic Programming

using function approximation

DInstaDeep™

The goal of function approximation

Approximate the values of states using a parameterised function

i: InstaDeep™

The goal of function approximation

Approximate the values of states using a parameterised function
e Input: state features

State variables in

e Cart pos'ﬂ:'\on

e Cart veloci’c}j

e Pole ansle

e Pole Veloci’cg ot tip

State s, for example,
C-o., LI, 3.3, II]

t InstaDeep™

The goal of function approximation

Approximate the values of states using a parameterised function
e Input: state features
e Output: estimated Q-values

State variobles in

e Cart position
e Cart velocity () Vector of values out
* Pole angle e Action O (le®)
* Pole velocity ot tip ® Action | (right)

@ (s), $or example,
State s, for example, (.44, -3.5]

C-o., LI, 3.3, II]

t InstaDeep™

The goal of function approximation

6(5:31 1W) o a(s!am!w)

d(s,aw)
Approximate the values of states using a parameterised function T
e Input: state features
e Output: estimated Q-values)

YA

w

B

State variobles in

e Cart position
e Cart velocity () Vector of values out
* Pole angle e Action O (le®)
* Pole velocity ot tip ® Action | (right)

@ (s), $or example,
State s, for example, (.44, -3.5]

C-o., LI, 3.3, II]

!

i: InstaDeep™

The goal of function approximation

Approximate the values of states using a parameterised function
e Input: state features
e Output: estimated Q-values
e Target: reward to go

State variobles in

e Cart position
e Cart velocity () Vector of values out
* Pole angle e Action O (le®)
* Pole velocity ot tip ® Action | (right)

@ (s), $or example,
State s, for example, (.44, -3.5]

C-o., LI, 3.3, II]

i: InstaDeep™

Approximate Dynamic Programming

i;‘ InstaDeep™

Approximate Dynamic Programming

i)flnstaDeep"“

Approximate Dynamic Programming

Typically a deep
neural network

i} InstaDeep™

Approximate Dynamic Programming

Why? Typically a deep

neural network

i;‘ InstaDeep™

Approximate Dynamic Programming

e Known to discover useful features

Uk |

\
.\ .rl);l'h
UemhRf

Qg

Why? Typically a deep

neural network

72

DL B

1] =
’-&':-).A"

i)lnstaDeep"‘

Approximate Dynamic Programming

Linear RL
e Known to discover useful features

TV i
;H¢T” %4

sl

oy

Why? Typically a deep

neural network

i;‘ InstaDeep™

Approximate Dynamic Programming

Known to discover useful features

Wealth of research in DL that can be
directly be applied to RL

oy

Why?

Linear RL

T"yl
sl

Typically a deep
neural network

i‘: InstaDeep™

Approximate Dynamic Programming

Typically a deep
neural network

i} InstaDeep™

Approximate Dynamic Programming

i)flnstaDeep"“

Approximate Dynamic Programming

Controls policy
improvement step

i;f InstaDeep™

78

Approximate Dynamic Programming

Q¢k,g

Controls policy
evaluation step

i;f InstaDeep™

Approximate Dynamic Programming

Q¢k,g

i)flnstaDeep"“

Approximate Dynamic Programming

Q¢k,g (T’i + Y MaXa Q¢k (S,a a/))

i} InstaDeep™

Approximate Dynamic Programming

Prediction Target

| |
Qgr, (i +ymaxa Qg (s, a"))

i;‘ InstaDeep™

Approximate Dynamic Programming

Prediction Target

| |
Q¢k,g (T’i + Y MaXa Q¢k (S,a a/))

Target network
note parameters do
not depend on g

i‘: InstaDeep™

Approximate Dynamic Programming

Prediction Target

| |
Qgr, (i +ymaxa Qg (s, a"))

i;‘ InstaDeep™

Approximate Dynamic Programming

Prediction Target

| |

Q¢k,g - (Ti + Y MaXa quk (S,a a/))

i;‘ InstaDeep™

Approximate Dynamic Programming

Prediction Target

- |
Q¢r,y — (i +ymaxa Qp, (s',a'))

J

Y
TD Error

i} InstaDeep™

Approximate Dynamic Programming

Prediction Target
‘] / / 2
Zi (Q¢k,g - (T’i + 7Y MaXa Q¢k (S y A)))
TDError

i} InstaDeep™

Approximate Dynamic Programming

Squared-error loss as in supervised learning

Prediction Target
‘] / / 2
Zi (Q¢k,g - (Ti + 7Y MaXa Q¢k (S y A)))
TDError

i;f InstaDeep™

Approximate Dynamic Programming Dataset ot

Squared-error loss as in supervised learning 8 ' ! %

Prediction Target
| |
2
> (Qoy,, — (i +ymaxar Qg, (s',2")))
TDError

i;f InstaDeep™

Approximate Dynamic Programming Dataset ot

Squared-error loss as in supervised learning 8 ' ! %

Prediction Target
| | 2
> (Qor,, — (ri +ymaxa Qg, (s',2")))
Sum over \ Y /
transition data TD Error

B = {(Sia a;, Sf,i) rt)}

i;' InstaDeep™

Approximate Dynamic Programming

Zi (Q¢k,g - (T’i + Y MaXa Q¢k (Slaa/)))z

i;‘ InstaDeep™

Approximate Dynamic Programming

Zi (Q¢k,g - (T’i + Y MaXa Q¢k (Slaa/)))z

Pr,g+1 < Pr,g — Vg, E(B, ¢ g)

i;‘ InstaDeep™

Approximate Dynamic Programming

Ei (Q¢k,g - (T’i T 7Y MaXa’ Q¢k (S,aa/)))z

¢k,g—|—1 — ¢k,g — avd)k,g S(Ba ¢k,g)
Update the parameters using gradient descent

i‘: InstaDeep™

Approximate Dynamic Programming

2
Zi (Q¢k,g - (Tz‘ + Yymaxa g, (A%
Qg—kl(_ ¢k,g - av¢k,gg(B7 ¢k,g)
Update the parameters using gradient descent

i‘: InstaDeep™

94

Approximate Dynamic Programming

SRz
Wl
\‘"". i

1717

Uyt
O s
SN mtote

‘Q&&&y&z i i

M

Update the parameters using gradient descent

i)flnstaDeep"“

Approximate Dynamic Programming

Zi (Q¢k,g - (T’i + Y MaXa Q¢k (Slaa/)))z

Pr,g+1 < Pr,g — Vg, E(B, ¢ g)

i;‘ InstaDeep™

Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B

> (Qon, — (ri + vy maxa Qg, (5,2)))°
Pr,g+1 < Pr,g — Vg, E(B,Prg)
end for

i‘: InstaDeep™

Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B

2)
> (Qor , — (ri + ymaxa Qg (s',2')))" | poﬁfﬁr@ﬂ?ﬂﬁon
Pk,g+1 < Pk,g — av¢k,g£(B7 Pk,g)

end for

t InstaDeep™

Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B
2 .
S (@, = ot ymamw Qo)) | pomnae
Pk,g+1 < Pr,g — Vg, E(B, Pig) ’
end for

Plt1 </5l<:,G

t InstaDeep™

Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B
2 .
S (@, = ot ymamw Qo)) | pomnae
Pk,g+1 < Pr,g — Vg, E(B, Pig) ’
end for

Plt1 </5l<:,G

Act (¢) greedy with
respect to new
parameters

i: InstaDeep™

Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B
2 .
S (@, = ot ymamw Qo)) | pomnae
Pk,g+1 < Pr,g — Vg, E(B, Pig) ’
end for

'\

Pk+1 < Pk.G
Approximate

Act (¢) greedy with (- Policy Improvement
respect to new

parameters

i‘, InstaDeep™

101

Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B

> (Qon, — (ri + vy maxa Qg, (5,2)))°
Pr,g+1 < Pr,g — Vg, E(B,Prg)
end for

Plt1 </5l<:,G

Act (¢) greedy with
respect to new
parameters

Approximate
Generalised Policy

Iteration
N
]

i: InstaDeep™

Generic Q-learning algorithm

1: initialize ¢g

i)flnstaDeep"“

Generic Q-learning algorithm

1: initialize ¢
2: initialize mo(als) = eld(a) + (1 — €)d(a = argmax, Q4. (s,a)) > Use e-greedy exploration

i} InstaDeep™

104

Generic Q-learning algorithm

1: initialize ¢¢
2: initialize mp(als) = eld(a) + (1 — €)d(a = argmax, Q 4, (s, a))
3: initialize replay buffer D = () as a ring buffer of fixed size

> Use e-greedy exploration

i;‘ InstaDeep™

Generic Q-learning algorithm

initialize ¢g

initialize my(a|s) = el (a) + (1 — €)d(a = argmaxa, Q4, (s, a))
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)

- -

> Use e-greedy exploration

i;f InstaDeep™

106

Generic Q-learning algorithm

initialize ¢
initialize mp(a|s) = eld(a) + (1 — €)d(a = argmaxa, Q4, (s, a))
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)

for iteration k£ € [0,..., K| do

o e 2 o

> Use e-greedy exploration

i;‘ InstaDeep™

Generic Q-learning algorithm

1: initialize ¢g

2: initialize mo(als) = eld(a) + (1 — €)d(a = argmax, Q ¢, (s, a))
3: initialize replay buffer D = () as a ring buffer of fixed size

4.
5
6

initialize s ~ do(s)

: for iteration k € [0,..., K] do

for step s € [0,...,S5 — 1] do

> Use e-greedy exploration

i;‘ InstaDeep™

Generic Q-learning algorithm

initialize ¢
initialize my(a|s) = eld(a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a ~ mi(als) > sample action from exploration policy

AR EERCO

i;' InstaDeep™

109

Generic Q-learning algorithm

1: initialize ¢

2: initialize mo(als) = eld(a) + (1 — €)d(a = argmax, Q¢ (s,a)) > Use e-greedy exploration
3: initialize replay buffer D = () as a ring buffer of fixed size

4: initialize s ~ dy(s)

5: for iteration k € [0, ..., K| do

6: forstepse|0,...,5—1]do

T a ~ mg(als) > sample action from exploration policy
8: s’ ~ p(s'|s,a) > sample next state from MDP

i‘: InstaDeep™

110

Generic Q-learning algorithm

S catenl ol o

initialize ¢

initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration

initialize replay buffer D = () as a ring buffer of fixed size

initialize s ~ do(s)

for iteration k£ € [0, ..., K| do

for step s € [0,...,S5 — 1] do

a ~ m(als) > sample action from exploration policy
s’ ~ p(s’|s, a) > sample next state from MDP
D+ DU{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big

i‘: InstaDeep™

m

Generic Q-learning algorithm

[E—

SRR MERE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for

i‘: InstaDeep™

112

Generic Q-learning algorithm

[S

SR damERh e

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s|s,a) > sample next state from MDP
D« DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for

k.0 < Pk

i‘: InstaDeep™

Generic Q-learning algorithm

—
N2 oP

RSP HRERDRE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s’|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do

i‘: InstaDeep™

114

Generic Q-learning algorithm

N
el el

RSP HRERDRE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,ai,s;,)}

i‘: InstaDeep™

Generic Q-learning algorithm

—
ool > = =4

14;

FRADPRERRE

initialize ¢
initialize my(a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a ~ mg(als) > sample action from exploration policy
s’ ~ p(s|s, a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,a;,s;,)}

estimate error (B, ¢r.g) = _; (Q¢y., — (i + ymaxa Qg (s’,a’)))2

i‘: InstaDeep™

116

Generic Q-learning algorithm

e N S T T
AT b el S

PEHHRERDRE

initialize ¢q
initialize my(a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k € [0,..., K] do
for step s € [0,...,S5 — 1] do
a ~ m(als) > sample action from exploration policy
s’ ~ p(s'|s,a) > sample next state from MDP
D+ DU{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,a;,s;,)}

estimate error (B, ¢r.g) = _; (Qgy, — (i + Y maxa Qg (s’,a’)))2
update parameters: ¢ g+1 < Pr,g — aV¢k)g£(B, ¢k,g)

t InstaDeep™

Generic Q-learning algorithm

e
el > sl =

—
-

—
ISAN A

PRSP HRERRO

initialize ¢
initialize my(a|s) = eld(a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s’|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,a;,s;,)}

estimate error £(B, ¢r.g) = _; (Q¢y., — (i + ymaxa Qg (s’,a’)))2
update parameters: ¢ g1 < Pr,g — aV¢k)g£’(B, Pk.q)
end for

t InstaDeep™

118

Generic Q-learning algorithm

—
el > el =

— e
N0 h

RSP HRERDRE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s’|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,ai,s;,)}
estimate error £(B, ¢r.g) = _; (Q¢y., — (i + ymaxa Qg (s’,a’)))2
update parameters: ¢y g1 < dr,g — Vg, E(B, Pk g)

end for
Pk+1 ¢ Pk.G > update parameters

t InstaDeep™

119

Generic Q-learning algorithm

e

10:
11:
12:
13:

14:
15:
16:
17:
18:

PHPHRERPE

initialize ¢
initialize my(a|s) = eld(a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a ~ mi(als) > sample action from exploration policy
s’ ~ p(s'|s, a) > sample next state from MDP
D+ DU{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(si,ai,s,r:)}

estimate error (B, ¢r.g) = >_; (Q¢y, — (i + ymaxa Qg (s’,a’)))2
update parameters: ¢ g1 < Pr,g — aV¢k)g£(B, Pk.q)
end for
Prt1 < Pk,G > update parameters
end for

t InstaDeep™

Deep Q-Networks

as special case of generic Q-learning

DInstaDeep™

121

Deep Q-Networks

LETTER

doi:10.1038/nature14236

Playing Atari with Deep Reinforcement Learning

learning

Volodymyr Mnih'¢, Koray }\a\ukcuoglu" David Silver'*, Andrei A. Rusu', Joel Veness', \larc(; Bellemare

Human-level control through deep reinforcement

Alex Graves',

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Toannis Antonoglou Martin Rledmlller Andreas K. Fi ld]eland (,eorg Ostrovski', Sug Petersen’, C| har1e< Beattie', Amir Sadik', loannis Antonoglou',

Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

Daan Wierstra Martin Riedmiller

DeepMind Technologies

Convglution Convglution Fully cgnnected Fully cgnnected

{vlad, koray,david, alex.graves,ioannis,daan,martin.riedmil ler} @ deepmind.com

/Pl O /= A\ ;

/ : . . . =B

Abstract] i/ m

We present the first deep learning model to successfully learn control policies di- 2 i { o\
rectly from high-dimensional sensory input using reinforcement learning. The . - D Q 4 - Q ! t 9 !
model is a convolutional neural network, trained with a variant of Q-learning, \ DD - ! 1 !
whose input is raw pixels and whose output is a value function estimating future ‘ 4 . . .
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn- /1 !
ing Environment, with no adjustment of the architecture or learning algorithm. We | D o)i ! !
find that it outperforms all previous approaches on six of the games and surpasses ¢ ¢ $ <O
&+O

a human expert on three of them.

i)flnstaDeep"“

Stability Issues with Deep Q-Networks

Naive Q-Learning oscillates or diverges with neural | DQN provides a stable solution to deep
networks: value-based RL:

A Use experience replay
Break correlations in data, bring us back to iid setting

[Datais sequential:
Learn from all past policies

Successive sample are correlated, non-iid.

A Freeze target Q-network
Avoid oscillations
Break correlations between Q-network and target

[Policy changes rapidly with slight changes to
Q-values

A Scale of rewards and Q-values is unknown
Naive Q-learning gradients can be large and unstable when
backpropagated.

A Clip rewards or normalize network adaptively

to sensible range
Robust gradients

Exploration is greedy
A Use Epsilon Greedy Exploration

nature Human-level control through deep reinforcement learning, V. Mnih et al, nature 2015 > InstaDeep™

Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

buffer size = 1
S=1
G=1

i)flnstaDeep"“

124

Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

buffer size = 1
S=1
G=1

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

buffer size = S (sampling size is a hyperparameter)
G =00 (until convergence)

i) InstaDeep™

Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)
buffer size = 1
8=1
G=1

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

buffer size = S (sampling size is a hyperparameter)
G =00 (until convergence)

Deep Q-Networks (Mnih et al., 2013)

buffer size, S, G (all hyperparameters)

Collect transitions and run gradient steps concurrently
Sample random batches from experience replay —— decorrelate transitions
Lagging update of target network —— fix target network to stabilise learning

i;‘ InstaDeep™

Deep Q-Networks results

Video Pinball '] 2856%
Boxing | ##oi%
Breakout | 13210
Star Gunner | 5588
Robotank | 508%
Atlantis | #4855
Crazy Climber | $18%
Gopher | 480%
Demon Attack | 2588
ame This Game | 278%
Krull *| 2279
246%
232%
224%

Assault |
Road Runner |
Kangaroo |
James Bond | #45%
Tennis | TiS% ’—«
Pong : 132%)

Space Invaders | 1285
Beam Rider | 188
Tutankham | #12%
<ung-Fu Master | fiZRIES
Freeway | Hozs
Time Pilot | Hoio%
Enduro | §7%
Fishing Derby | %
Up and Down | 528
Ice Hockey | 7%
Q*bert : 78%
H.E.R.O. |76 At human-level or above

InstaDeep™

http://www.youtube.com/watch?v=TmPfTpjtdgg

Next steps?
Deep RL Prac

>InstaDeep™

Other excellent sources:
Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto

OpenAl Spinning Up
David Silver UCL Course

© Copyright 2023 InstaDeep.com. All Rights Reserved

https://github.com/deep-learning-indaba/indaba-pracs-2022/blob/main/practicals/introduction_to_reinforcement_learning.ipynb
http://incompleteideas.net/book/the-book-2nd.html
https://spinningup.openai.com/en/latest/
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ&ab_channel=GoogleDeepMind

>InstaDeep™

Questions?

DInstaDeep™

