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Why RL



Strategy board game where two players try to
surround opponents pieces.

Likely the world's oldest board game, is thought to
have originated in China 4,000 years ago. [1]

Attempts to solve Go!

Many attempts to solve, but unsuccessful.
Number of configurations of board - 107170 -
“more than number of atoms in the universe” -
Alpha GO ( chess - ~10*50 possible positions)

Image, 1] https://www.britannica.com/topic/go-game
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https://en.wikipedia.org/wiki/File:FloorGoban.JPG

AlphaGo - Deep RL Based Computer Program Plays Go

Database of Expert Knowledge
(~30 million moves) + Self-Play

MCTS (Monte Carlo Tree

Search)

RL Problem
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Mastering the game of Go with deep neural networks and tree search

i)lnstaDeep"‘



AlphaGo - 2016 - Beat World Champion

"l thought AlphaGo was based on probability
calculation and that it was merely a machine. But
when | saw this move, | changed my mind. Surely,
AlphaGo is creative."

Lee Sedol - Winner of 18 world Go titles
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AlphaZero - Learn from Self-Play (No Human Knowledge)

No Database of Expert
Knowledge



https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

MuZero - Mastering Go, chess, shogi and Atari without
rules

Dynamics/Rules of the Game.

Real world settings - the rules
or dynamics are typically
unknown and complex.

MuZero


https://deepmind.com/blog/article/muzero-mastering-go-chess-shogi-and-atari-without-rules

Beyond Games
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MuZero - YouTube to optimise video compression

.

MuZero Youtube



https://deepmind.com/blog/article/MuZeros-first-step-from-research-into-the-real-world

RL at InstaDeep

DeepPCB™

(Hardware/IOT)

Design complex printed
circuit boards in less than
24 Hours

Accelerates the product cycle in I0T
and consumer electronics

DeepPack™

(Logistics/Supply Chain)

Pack items more
efficiently to improve
supply chain logistics

Save money on transport costs for
large shipments

DeepRail™

(Fleet Management)

Optimize train scheduling
and mobility fleet
management

Reduces passenger delays, better yields on
infrastructure projects
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RL Flow and Intuition
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Practical Setting - Robot Playing Football
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Reinforcement Learning (RL) Loop

Environment:

e The system we care about - returns our
reward signal.
e What our “agent” sees and interacts with.
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Reinforcement Learning (RL) Loop

Agent:

e Interacts with the environment.
e Entity that makes decisions, adapts
and learns.

i} InstaDeep™



Reinforcement Learning (RL) Loop

S E S Receive state from possible states.

) Receive reward.

/ a E A Take action from available actions. i>|nstaDeep""



Reinforcement Learning (RL) Loop

r s

-
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Reinforcement Learning (RL) Loop

T s a r S
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Reinforcement Learning (RL) Loop
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RL compared to Supervised Learning (SL) - Decisions

e SL - One-shot e RL - Sequential
HIIJIJEN‘ D_) D
P :nuwur D
N > | 0—0
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RL compared to Supervised Learning - Training

e SL - Learn from labelled examples.

GET

Classification problem

Model j

> T [ aminibanis e

fnto the model.

&
n- -

»

Training Dataset.
Labelled examples.

(8) model predicts and
calculates a loss. For
example, accuracy 10%,
or 80% or 3%, or 100%.
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RL compared to Supervised Learning - Training - Trial and Error

Learn from interacting with an environment.

Environment/Simulator
- Reward signal.
- Possible states and actions.
- Rules or dynamics of the
environment.

~
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RL compared to Supervised Learning - Objectives

e SL - Performance on Test Set e RL - Maximize Cumulative
(e.g. Test Accuracy/Loss). Reward (Return).

Train Data

Test Data

e.g. test accuracy 78%. e.g. return is 100 (scored 100 goals in a match)
- or mean episode return is 50 (played two

games - game 1 scored 75, game 2 scored 2_5).
|>InstaDeep™



Reinforcement Learning (RL)

RL agent-environment interaction loop

AGENT ENVIRONMENT
-State s €S

- Take action a € A

-Getreward 7 g
-Newstate s’ € S

RL is goal-directed learning from interaction (trial and error).
Learn - what to do (how to map situations to actions, as to i
maximize a numerical reward). P> InstaDeep



RL Formalism
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Markov Decision Process (MDP)

MDPs: Formal way to describe an RL environment (or any sequential
decision-making systems).

Markov Property: Transitions only depend on the most recent state and action,
and no prior history (current state contains all necessary information).

‘" - Given

]P)[St—f—l“.st] = P[St—}—llsla mis = ) St]

Probability of next state given current state = Probability of next state given whole history

L InstaDeep™



Markov Property

Do we need history for Chess? Which direction is the ball going?

Chess - Markovian. Atari Breakout - Not Markovian.

i) InstaDeep™



Markov Decision Process (MDP)
M = (87 Aa T7 dOa r, ’7)

i)lnstaDeep"‘
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Markov Decision Process (MDP)
M = (‘Sa Aa T7 dOa r, ’7)

S - state space - is a finite set of states.

s € §, full description/representation of the environment
at a particular time (discrete or continuous).

e.g. X 0 0 0

0 B B 0

0 0 0 T

where x - agent, T - terminal, B - blocked, O - open space.

i)lnstaDeep"‘
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Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

A - action space - is a finite set of actions.

a € A, what our agent does (discrete or
continuous).

g.
1.LEFT=0

2. DOWN =1
3. RIGHT =2
4.UP=3

o o OH O
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Markov Decision Process (MDP)
M = (‘57 A) T7 dOa r, ’7)

T - transition probability.

P(s'|s,a) = P[Sy1 = &'|S; = 8, A; = a]

Deterministic
If you decide to go left you'll go left.
Stochastic

Probability distribution over transitions e.qg. if you
decide to go left, you will go left 50% of the time, stay
in your location 50% of the time.

i) InstaDeep™



Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

dO - distribution of initial states - do
you always start in the same place?

i)flnstaDeep"“



Markov Decision Process (MDP)
M = (‘57 A) T7 dOa r, ’7)

r - reward function - how good our
current state/action was.

i) InstaDeep™



Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

y € [0,1] is a discount factor, that
penalise rewards in the future.

i)flnstaDeep"“



Policy - Agents - What to Do

Policy: Mapping from states to actions.

Deterministic: Stochastic:

7r(a|s) = P[A; = a|S; = ]

a ~ mw(A|s)

In Deep RL - policies are parameterized by the weights of Neural Network ©:

TG




Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

Trajectory

T = (507307°"7SH7aH)
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Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

Trajectory

T = (507a07°"7SH7aH)

Trajectory distribution
H
pr (1) = do(so) | | w(aslst)T(se11lst, a)
t=0

i)flnstaDeep"“
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Markov Decision Process (MDP)
M = (‘57 Aa T7 dOa r, ’7)

Trajectory

T = (507a07°"7SH7aH)

. . . Product notation.
Trajectory distribution

pw.(T) = do(s0) H'ﬁ(at|st)T(St+1|St, a)

Policy

Probability of a specific trajectory.

i)flnstaDeep"“



Return vs Reward

Reward - how good our current state/action is.
re = 1(5¢,04)

Return - expected cumulative reward over time.

R;i(1) = Sf—z YT

i‘: InstaDeep™
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RL Objective

J(m) =

Sum of rewards weighted by their probability.

()]

Trajectory sampled from trajectory
distribution according to policy.

Return (reward over time) following these
trajectories.

Maximise the total expected return per episode.
E.g. football - score most goals in a match or over many matches.

i;f InstaDeep™



How our agents learns - Value

Value: What is good in the long run.

Value of state(s) /state-action (s,a): How good is the s or s,a pair, i.e. the expected
return (G_t) if you start at s or s,a and then act according to your policy.

State-value function:

Erp, (rls) [B(7)|50 = 8]

Action-value (Q) function: ( )

Efficiently estimating values is critical to RL.
i) InstaDeep™



Kinds of RL Algorithms (Model-free)

/ Value-Based Methods \\ Policy-Based Methods | Actor-Critic Methods
PSP I S wor mplals)
e Qo(s,a) T (als) Toa

Al

R Critic Qw (87 a’)

N

é - o =argmaz ((s,a) a ~ my(als) a ~ my(als)

T

Bvos

" DQN. i Reinforce. . A2C/A3C, DDPG,
G\ // | PPO, etc. )
' ' > InstaDeep™




Dynamic Programming - Bellman Equation

Value functions can be split into 2 parts:

Q" (s,a) = Ex[r(s,a) +vQ" (s¢41,a41) | St = s, Ay = a

"

Immediate Reward.

AN

Discounted value of next state.

i)lnstaDeep"‘



Dynamic Programming

Bellman Operator

é?‘l’ — B?TQ—’W

44

limg_ o0 éw — éw
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Policy Iteration

States
. Q 0 1 2 3
S 0 15 | -0.2 1.2 5.7
< 1 4.2 21 2.7 6.1

45
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Policy Iteration

Actions

46

States
Q 0 1 2 3
0 15 | -0.2 1,2 5.7
1 4.2 2.1 2.7 6.1

Policy Evaluation (Prediction)

k—l—l - BWQk

i; InstaDeep™



Policy Iteration

States
. Q 0 1 2 3
S 0 15 | -0.2 1.2 5.7
< 1 4.2 21 2.7 6.1

Policy Evaluation (Prediction)

k—l—l - BWQk

47

Policy Improvement (Control)

m(auls.) = d(a, = argmax Q(sy, a))

i; InstaDeep™



Policy Iteration

Actions

48

States
0 1 2 3
-1.5 -0.2 1.2 5.7
4.2 -2.1 2.7 6.1

Policy Evaluation (Prediction) ﬁ

k—l—l - BWQk

)

Policy Improvement (Control)

m(auls.) = d(a, = argmax Q(sy, a))

i‘, InstaDeep™



Policy Iteration

States
. Q 0 1 2 3
S 0 15 | -0.2 1.2 5.7
< 1 4.2 21 2.7 6.1

Vs y T

Policy Evaluation (Prediction) ﬁ

k—l—l - BWQk

49

%teedy( v)
™= Sutton and Barto, 2018.

Policy Improvement (Control)

m(a¢|sy) = d(a; = argmax Q(s¢, ay))

i‘: InstaDeep™



Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

50
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Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

i) InstaDeep™
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Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

- A A,

Need a model o o e e«

i) InstaDeep™
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Value Iteration

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) max Q*(St+1,at+1)

i) InstaDeep™
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) lgﬁf Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Target - OldEstimate]

i} InstaDeep™
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) lgﬁf Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Target - OldEstimate]

i} InstaDeep™
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) [gi‘ff Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Ta,rget - OldEstimate]

i) InstaDeep™
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Value Iteration -> Temporal Difference (TD) learning

Bellman Optimality Equation

Q*(st,at) = 1(st, ar) + Vs, ~T(si11ls0,m0) [gi‘ff Q*(St+1,at+1)]

Incrementally estimate
using samples

NewEstimate < OldEstimate + StepSize [Ta,rget - OldEstimate]

\ J
Y

TD Error

i) InstaDeep™
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Q-Learning (Off-policy TD Learning)

Update the value estimates in part based on other estimates: “Learning a guess

from a guess”.

Q(st,at) < Q(s¢,a¢) + a(T(St,at) +ymax, Q (s¢+1,a) — Q(Staat))

/

Old Estimate.

Step Size.

AN

Target

Old Estimate.

J

TD Error

i;f InstaDeep™




Q-Learning (Off-policy TD Learning)

Game Board: Q Table: y=0.95
[, 000 000 000 100 010 001
2 100 010 001 000 000 000

]
{
=
&=

C
-]
=
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https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning

Q-Learning (Off-policy TD Learning)

Game Board: Q Table: y=0.95
f' 000 000 000 100 010 001
i 100 010 001 000 000 000
G 02 | 03 | 1.0 |-022| -03 | 00
Current state (s): ggg 05 | 04 | 042 |-004 | 002 | 00

]
4
) | 0.21 0.4 -0.3 0.5 1.0 0.0
=

-06 | 01 | -01 | -0.31 | -0.01 | 0.0

C
-]
=

i)lnstaDeep"‘
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https://stackoverflow.com/questions/56777123/questions-about-deep-q-learning

Q-learning in large state spaces?

Its state space is comprised of four variables:
« The cart position on the track (x-axis) with a range from -2.4 to 2.4
» The cart velocity along the track (x-axis) with a range from —inf to inf
« The pole angle with a range of ~—40 degrees to ~ 40 degrees
« The pole velocity at the tip with a range of —inf to inf

Tabular RL does not scale to large complex problems:
e Too many states to store in memory
e Too slow to update and estimate values for each state

Need to use an approach able to generalise across many states

i: InstaDeep™



Approx. Dynamic Programming

using function approximation

DInstaDeep™



The goal of function approximation

Approximate the values of states using a parameterised function

i: InstaDeep™



The goal of function approximation

Approximate the values of states using a parameterised function
e Input: state features

State variables in

e Cart pos'ﬂ:'\on

e Cart veloci’c}j

e Pole ansle

e Pole Veloci’cg ot tip

State s, for example,
C-o., LI, 3.3, II]

t InstaDeep™



The goal of function approximation

Approximate the values of states using a parameterised function
e Input: state features
e Output: estimated Q-values

State variobles in

e Cart position
e Cart velocity () Vector of values out
* Pole angle e Action O (le®)
* Pole velocity ot tip ® Action | (right)

@ (s), $or example,
State s, for example, (.44, -3.5]

C-o., LI, 3.3, II]

t InstaDeep™



The goal of function approximation

6(5:31 1W) o a(s!am!w)

d(s,aw)
Approximate the values of states using a parameterised function T
e Input: state features
e Output: estimated Q-values )

YA

w

B

State variobles in

e Cart position
e Cart velocity () Vector of values out
* Pole angle e Action O (le®)
* Pole velocity ot tip ® Action | (right)

@ (s), $or example,
State s, for example, (.44, -3.5]

C-o., LI, 3.3, II]

!
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The goal of function approximation

Approximate the values of states using a parameterised function
e Input: state features
e Output: estimated Q-values
e Target: reward to go

State variobles in

e Cart position
e Cart velocity () Vector of values out
* Pole angle e Action O (le®)
* Pole velocity ot tip ® Action | (right)

@ (s), $or example,
State s, for example, (.44, -3.5]

C-o., LI, 3.3, II]

i: InstaDeep™



Approximate Dynamic Programming

i;‘ InstaDeep™



Approximate Dynamic Programming
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Approximate Dynamic Programming

Typically a deep
neural network

i} InstaDeep™



Approximate Dynamic Programming

Why? Typically a deep

neural network

i;‘ InstaDeep™



Approximate Dynamic Programming

e Known to discover useful features

Uk |

\
.\ .rl);l'h
UemhRf

Qg

Why? Typically a deep

neural network

72

DL B

1] =
’-&':-).A"
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Approximate Dynamic Programming

Linear RL
e Known to discover useful features

TV i
;H¢T” %4

sl

oy

Why? Typically a deep

neural network

i;‘ InstaDeep™



Approximate Dynamic Programming

Known to discover useful features

Wealth of research in DL that can be
directly be applied to RL

oy

Why?

Linear RL

T"yl
sl

Typically a deep
neural network

i‘: InstaDeep™



Approximate Dynamic Programming

Typically a deep
neural network

i} InstaDeep™



Approximate Dynamic Programming
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Approximate Dynamic Programming

Controls policy
improvement step

i;f InstaDeep™
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Approximate Dynamic Programming

Q¢k,g

Controls policy
evaluation step

i;f InstaDeep™



Approximate Dynamic Programming

Q¢k,g

i)flnstaDeep"“



Approximate Dynamic Programming

Q¢k,g (T’i + Y MaXa Q¢k (S,a a/))

i} InstaDeep™



Approximate Dynamic Programming

Prediction Target

| |
Qgr, (i +ymaxa Qg (s, a"))

i;‘ InstaDeep™



Approximate Dynamic Programming

Prediction Target

| |
Q¢k,g (T’i + Y MaXa Q¢k (S,a a/))

Target network
note parameters do
not depend on g

i‘: InstaDeep™



Approximate Dynamic Programming

Prediction Target

| |
Qgr, (i +ymaxa Qg (s, a"))

i;‘ InstaDeep™



Approximate Dynamic Programming

Prediction Target

| |

Q¢k,g - (Ti + Y MaXa quk (S,a a/))

i;‘ InstaDeep™



Approximate Dynamic Programming

Prediction Target

- |
Q¢r,y — (i +ymaxa Qp, (s',a'))

J

Y
TD Error

i} InstaDeep™



Approximate Dynamic Programming

Prediction Target
‘ ] / / 2
Zi (Q¢k,g - (T’i + 7Y MaXa Q¢k (S y A )))
TDError

i} InstaDeep™



Approximate Dynamic Programming

Squared-error loss as in supervised learning

Prediction Target
‘ ] / / 2
Zi (Q¢k,g - (Ti + 7Y MaXa Q¢k (S y A )))
TDError

i;f InstaDeep™



Approximate Dynamic Programming Dataset ot

Squared-error loss as in supervised learning 8 ' ! %

Prediction Target
| |
2
> (Qoy,, — (i +ymaxar Qg, (s',2")))
TDError

i;f InstaDeep™



Approximate Dynamic Programming Dataset ot

Squared-error loss as in supervised learning 8 ' ! %

Prediction Target
| | 2
> (Qor,, — (ri +ymaxa Qg, (s',2")))
Sum over \ Y /
transition data TD Error

B = {(Sia a;, Sf,i) rt)}

i;' InstaDeep™



Approximate Dynamic Programming

Zi (Q¢k,g - (T’i + Y MaXa Q¢k (Slaa/)))z

i;‘ InstaDeep™



Approximate Dynamic Programming

Zi (Q¢k,g - (T’i + Y MaXa Q¢k (Slaa/)))z

Pr,g+1 < Pr,g — Vg, E(B, ¢ g)

i;‘ InstaDeep™



Approximate Dynamic Programming

Ei (Q¢k,g - (T’i T 7Y MaXa’ Q¢k (S,aa/)))z

¢k,g—|—1 — ¢k,g — avd)k,g S(Ba ¢k,g)
Update the parameters using gradient descent

i‘: InstaDeep™



Approximate Dynamic Programming

2
Zi (Q¢k,g - (Tz‘ + Yymaxa g, (A%
Qg—kl(_ ¢k,g - av¢k,gg(B7 ¢k,g)
Update the parameters using gradient descent

i‘: InstaDeep™
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Approximate Dynamic Programming

SRz
Wl
\‘"". i

1717

Uyt
O s
SN mtote

‘Q&&&y&z i i

M

Update the parameters using gradient descent

i)flnstaDeep"“



Approximate Dynamic Programming

Zi (Q¢k,g - (T’i + Y MaXa Q¢k (Slaa/)))z

Pr,g+1 < Pr,g — Vg, E(B, ¢ g)

i;‘ InstaDeep™



Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B

> (Qon, — (ri + vy maxa Qg, (5,2)))°
Pr,g+1 < Pr,g — Vg, E(B,Prg)
end for

i‘: InstaDeep™



Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B

2 )
> (Qor , — (ri + ymaxa Qg (s',2')))" | poﬁfﬁr@ﬂ?ﬂﬁon
Pk,g+1 < Pk,g — av¢k,g£(B7 Pk,g)

end for

t InstaDeep™



Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B
2 .
S (@, = ot ymamw Qo)) | pomnae
Pk,g+1 < Pr,g — Vg, E(B, Pig) ’
end for

Plt1 </5l<:,G

t InstaDeep™



Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B
2 .
S (@, = ot ymamw Qo)) | pomnae
Pk,g+1 < Pr,g — Vg, E(B, Pig) ’
end for

Plt1 </5l<:,G

Act (¢) greedy with
respect to new
parameters

i: InstaDeep™



Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B
2 .
S (@, = ot ymamw Qo)) | pomnae
Pk,g+1 < Pr,g — Vg, E(B, Pig) ’
end for

'\

Pk+1 < Pk.G
Approximate

Act (¢) greedy with (- Policy Improvement
respect to new

parameters

i‘, InstaDeep™
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Approximate Dynamic Programming

for gradient step g € [0,...,G — 1] do
sample batch B

> (Qon, — (ri + vy maxa Qg, (5,2)))°
Pr,g+1 < Pr,g — Vg, E(B,Prg)
end for

Plt1 </5l<:,G

Act (¢) greedy with
respect to new
parameters

Approximate
Generalised Policy

Iteration
N
]

i: InstaDeep™



Generic Q-learning algorithm

1: initialize ¢g

i)flnstaDeep"“



Generic Q-learning algorithm

1: initialize ¢
2: initialize mo(als) = eld(a) + (1 — €)d(a = argmax, Q4. (s,a)) > Use e-greedy exploration

i} InstaDeep™
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Generic Q-learning algorithm

1: initialize ¢¢
2: initialize mp(als) = eld(a) + (1 — €)d(a = argmax, Q 4, (s, a))
3: initialize replay buffer D = () as a ring buffer of fixed size

> Use e-greedy exploration

i;‘ InstaDeep™



Generic Q-learning algorithm

initialize ¢g

initialize my(a|s) = el (a) + (1 — €)d(a = argmaxa, Q4, (s, a))
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)

- -

> Use e-greedy exploration

i;f InstaDeep™
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Generic Q-learning algorithm

initialize ¢
initialize mp(a|s) = eld(a) + (1 — €)d(a = argmaxa, Q4, (s, a))
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)

for iteration k£ € [0,..., K| do

o e 2 o

> Use e-greedy exploration

i;‘ InstaDeep™



Generic Q-learning algorithm

1: initialize ¢g

2: initialize mo(als) = eld(a) + (1 — €)d(a = argmax, Q ¢, (s, a))
3: initialize replay buffer D = () as a ring buffer of fixed size

4.
5
6

initialize s ~ do(s)

: for iteration k € [0,..., K] do

for step s € [0,...,S5 — 1] do

> Use e-greedy exploration
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Generic Q-learning algorithm

initialize ¢
initialize my(a|s) = eld(a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a ~ mi(als) > sample action from exploration policy

AR EERCO
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Generic Q-learning algorithm

1: initialize ¢

2: initialize mo(als) = eld(a) + (1 — €)d(a = argmax, Q¢ (s,a)) > Use e-greedy exploration
3: initialize replay buffer D = () as a ring buffer of fixed size

4: initialize s ~ dy(s)

5: for iteration k € [0, ..., K| do

6: forstepse|0,...,5—1]do

T a ~ mg(als) > sample action from exploration policy
8: s’ ~ p(s'|s,a) > sample next state from MDP

i‘: InstaDeep™
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Generic Q-learning algorithm

S catenl ol o

initialize ¢

initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration

initialize replay buffer D = () as a ring buffer of fixed size

initialize s ~ do(s)

for iteration k£ € [0, ..., K| do

for step s € [0,...,S5 — 1] do

a ~ m(als) > sample action from exploration policy
s’ ~ p(s’|s, a) > sample next state from MDP
D+ DU{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big

i‘: InstaDeep™
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Generic Q-learning algorithm

[E—

SRR MERE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for

i‘: InstaDeep™



112

Generic Q-learning algorithm

[ S

SR damERh e

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s|s,a) > sample next state from MDP
D« DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for

k.0 < Pk

i‘: InstaDeep™



Generic Q-learning algorithm

—
N2 oP

RSP HRERDRE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s’|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do

i‘: InstaDeep™
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Generic Q-learning algorithm

N
el el

RSP HRERDRE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,ai,s;, )}

i‘: InstaDeep™



Generic Q-learning algorithm

—
ool > = =4

14;

FRADPRERRE

initialize ¢
initialize my(a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a ~ mg(als) > sample action from exploration policy
s’ ~ p(s|s, a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,a;,s;, )}

estimate error (B, ¢r.g) = _; (Q¢y., — (i + ymaxa Qg (s’,a’)))2

i‘: InstaDeep™
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Generic Q-learning algorithm

e N S T T
AT b el S

PEHHRERDRE

initialize ¢q
initialize my(a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k € [0,..., K] do
for step s € [0,...,S5 — 1] do
a ~ m(als) > sample action from exploration policy
s’ ~ p(s'|s,a) > sample next state from MDP
D+ DU{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,a;,s;, )}

estimate error (B, ¢r.g) = _; (Qgy, — (i + Y maxa Qg (s’,a’)))2
update parameters: ¢ g+1 < Pr,g — aV¢k)g£(B, ¢k,g)

t InstaDeep™



Generic Q-learning algorithm

e
el > sl =

—
-

—
ISAN A

PRSP HRERRO

initialize ¢
initialize my(a|s) = eld(a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0,..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s’|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,a;,s;, )}

estimate error £(B, ¢r.g) = _; (Q¢y., — (i + ymaxa Qg (s’,a’)))2
update parameters: ¢ g1 < Pr,g — aV¢k)g£’(B, Pk.q)
end for
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Generic Q-learning algorithm

—
el > el =

— e
N0 h

RSP HRERDRE

initialize ¢
initialize 7y (a|s) = el (a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ dg(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a~ mg(als) > sample action from exploration policy
s’ ~ p(s’|s,a) > sample next state from MDP
D+ DUA{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(s;,ai,s;, )}
estimate error £(B, ¢r.g) = _; (Q¢y., — (i + ymaxa Qg (s’,a’)))2
update parameters: ¢y g1 < dr,g — Vg, E(B, Pk g)

end for
Pk+1 ¢ Pk.G > update parameters

t InstaDeep™
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Generic Q-learning algorithm

e

10:
11:
12:
13:

14:
15:
16:
17:
18:

PHPHRERPE

initialize ¢
initialize my(a|s) = eld(a) + (1 — €)d(a = argmax, Q4,(s,a)) > Use e-greedy exploration
initialize replay buffer D = () as a ring buffer of fixed size
initialize s ~ do(s)
for iteration k£ € [0, ..., K| do
for step s € [0,...,S5 — 1] do
a ~ mi(als) > sample action from exploration policy
s’ ~ p(s'|s, a) > sample next state from MDP
D+ DU{(s,a,s’,r(s,a))} > append to buffer, purging old data if buffer too big
end for
Pr,0 < Pk
for gradient step g € [0,...,G — 1] do
sample batch B C D > B = {(si,ai,s,r:)}

estimate error (B, ¢r.g) = >_; (Q¢y, — (i + ymaxa Qg (s’,a’)))2
update parameters: ¢ g1 < Pr,g — aV¢k)g£(B, Pk.q)
end for
Prt1 < Pk,G > update parameters
end for
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Deep Q-Networks

as special case of generic Q-learning
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Deep Q-Networks

LETTER

doi:10.1038/nature14236

Playing Atari with Deep Reinforcement Learning

learning

Volodymyr Mnih'¢, Koray }\a\ukcuoglu" David Silver'*, Andrei A. Rusu', Joel Veness', \larc(; Bellemare

Human-level control through deep reinforcement

Alex Graves',

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Toannis Antonoglou Martin Rledmlller Andreas K. Fi ld]eland (,eorg Ostrovski', Sug Petersen’, C| har1e< Beattie', Amir Sadik', loannis Antonoglou',

Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

Daan Wierstra Martin Riedmiller

DeepMind Technologies

Convglution Convglution Fully cgnnected Fully cgnnected

{vlad, koray,david, alex.graves,ioannis,daan,martin.riedmil ler} @ deepmind.com

/Pl O /= A\ ;

/ : . . . =B

Abstract ] i/ m

We present the first deep learning model to successfully learn control policies di- 2 i { o\
rectly from high-dimensional sensory input using reinforcement learning. The . - D Q 4 - Q ! t 9 !
model is a convolutional neural network, trained with a variant of Q-learning, \ DD - ! 1 !
whose input is raw pixels and whose output is a value function estimating future ‘ 4 . . .
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn- /1 !
ing Environment, with no adjustment of the architecture or learning algorithm. We | D o )i ! !
find that it outperforms all previous approaches on six of the games and surpasses ¢ ¢ $ <O
&+O

a human expert on three of them.
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Stability Issues with Deep Q-Networks

Naive Q-Learning oscillates or diverges with neural | DQN provides a stable solution to deep
networks: value-based RL:

A Use experience replay
Break correlations in data, bring us back to iid setting

[  Datais sequential:
Learn from all past policies

Successive sample are correlated, non-iid.

A Freeze target Q-network
Avoid oscillations
Break correlations between Q-network and target

[ Policy changes rapidly with slight changes to
Q-values

A Scale of rewards and Q-values is unknown
Naive Q-learning gradients can be large and unstable when
backpropagated.

A Clip rewards or normalize network adaptively

to sensible range
Robust gradients

Exploration is greedy
A Use Epsilon Greedy Exploration

nature Human-level control through deep reinforcement learning, V. Mnih et al, nature 2015 > InstaDeep™



Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

buffer size = 1
S=1
G=1

i)flnstaDeep"“
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Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)

buffer size = 1
S=1
G=1

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

buffer size = S (sampling size is a hyperparameter)
G =00 (until convergence)

i) InstaDeep™



Special cases of the generic Q-learning algorithm

Classic Q-learning (Watkins and Dayan, 1992)
buffer size = 1
8=1
G=1

Fitted Q-iteration (Ernst et al., 2005, Riedmiller et al., 2005)

buffer size = S (sampling size is a hyperparameter)
G =00 (until convergence)

Deep Q-Networks (Mnih et al., 2013)

buffer size, S, G (all hyperparameters)

Collect transitions and run gradient steps concurrently
Sample random batches from experience replay —— decorrelate transitions
Lagging update of target network —— fix target network to stabilise learning

i;‘ InstaDeep™



Deep Q-Networks results

Video Pinball '] 2856%
Boxing | ##oi%
Breakout | 13210
Star Gunner | 5588
Robotank | 508%
Atlantis | #4855
Crazy Climber | $18%
Gopher | 480%
Demon Attack | 2588
ame This Game | 278%
Krull *| 2279
246%
232%
224%

Assault |
Road Runner |
Kangaroo |
James Bond | #45%
Tennis | TiS% ’—«
Pong : 132% )

Space Invaders | 1285
Beam Rider | 188
Tutankham | #12%
<ung-Fu Master | fiZRIES
Freeway | Hozs
Time Pilot | Hoio%
Enduro | §7%
Fishing Derby | %
Up and Down | 528
Ice Hockey | 7%
Q*bert : 78%
H.E.R.O. |76 At human-level or above
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http://www.youtube.com/watch?v=TmPfTpjtdgg

Next steps?
Deep RL Prac

>InstaDeep™

Other excellent sources:
Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto

OpenAl Spinning Up
David Silver UCL Course

© Copyright 2023 InstaDeep.com. All Rights Reserved


https://github.com/deep-learning-indaba/indaba-pracs-2022/blob/main/practicals/introduction_to_reinforcement_learning.ipynb
http://incompleteideas.net/book/the-book-2nd.html
https://spinningup.openai.com/en/latest/
https://www.youtube.com/watch?v=2pWv7GOvuf0&list=PLqYmG7hTraZDM-OYHWgPebj2MfCFzFObQ&ab_channel=GoogleDeepMind
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Questions?
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